These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38515036)

  • 1. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection.
    Wang X; Qi F; Sun Z; Liu H; Wu Y; Wu X; Xu J; Liu H; Qin L; Wang Z; Sang S; Dong W; Huang B; Zheng Z; Zhang X
    BMC Plant Biol; 2024 Mar; 24(1):207. PubMed ID: 38515036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum.
    Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H
    BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt.
    Qi F; Sun Z; Liu H; Zheng Z; Qin L; Shi L; Chen Q; Liu H; Lin X; Miao L; Tian M; Wang X; Huang B; Dong W; Zhang X
    Theor Appl Genet; 2022 Apr; 135(4):1319-1330. PubMed ID: 35059781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco.
    Zhang C; Chen H; Cai T; Deng Y; Zhuang R; Zhang N; Zeng Y; Zheng Y; Tang R; Pan R; Zhuang W
    Plant Biotechnol J; 2017 Jan; 15(1):39-55. PubMed ID: 27311738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.).
    Luo H; Pandey MK; Khan AW; Wu B; Guo J; Ren X; Zhou X; Chen Y; Chen W; Huang L; Liu N; Lei Y; Liao B; Varshney RK; Jiang H
    Plant Biotechnol J; 2019 Dec; 17(12):2356-2369. PubMed ID: 31087470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering the transcriptional responses of tobacco (Nicotiana tabacum L.) roots to Ralstonia solanacearum infection: a comparative study of resistant and susceptible cultivars.
    Zhang H; Ikram M; Li R; Xia Y; Zhao W; Yuan Q; Siddique KHM; Guo P
    BMC Plant Biol; 2023 Dec; 23(1):620. PubMed ID: 38057713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Differential expression of genes related to bacterial wilt resistance in peanut (Arachis hypogaea L.)].
    Peng WF; Lv JW; Ren XP; Huang L; Zhao XY; Wen QG; Jiang HF
    Yi Chuan; 2011 Apr; 33(4):389-96. PubMed ID: 21482530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6.
    Luo H; Pandey MK; Zhi Y; Zhang H; Xu S; Guo J; Wu B; Chen H; Ren X; Zhou X; Chen Y; Chen W; Huang L; Liu N; Sudini HK; Varshney RK; Lei Y; Liao B; Jiang H
    Theor Appl Genet; 2020 Apr; 133(4):1133-1148. PubMed ID: 31980836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic N
    Zhao K; Li Z; Ke Y; Ren R; Cao Z; Li Z; Wang K; Wang X; Wang J; Ma Q; Cao D; Zhao K; Li Y; Hu S; Qiu D; Gong F; Ma X; Zhang X; Fan G; Liang Z; Yin D
    New Phytol; 2024 Apr; 242(1):231-246. PubMed ID: 38326943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm.
    Zhao Z; Tseng YC; Peng Z; Lopez Y; Chen CY; Tillman BL; Dang P; Wang J
    BMC Genet; 2018 Mar; 19(1):17. PubMed ID: 29571286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco.
    Zhang C; Chen H; Zhuang RR; Chen YT; Deng Y; Cai TC; Wang SY; Liu QZ; Tang RH; Shan SH; Pan RL; Chen LS; Zhuang WJ
    J Exp Bot; 2019 Oct; 70(19):5407-5421. PubMed ID: 31173088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii.
    Zuluaga AP; Solé M; Lu H; Góngora-Castillo E; Vaillancourt B; Coll N; Buell CR; Valls M
    BMC Genomics; 2015 Mar; 16(1):246. PubMed ID: 25880642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection.
    Prasath D; Karthika R; Habeeba NT; Suraby EJ; Rosana OB; Shaji A; Eapen SJ; Deshpande U; Anandaraj M
    PLoS One; 2014; 9(6):e99731. PubMed ID: 24940878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200.
    Chen K; Wang L; Chen H; Zhang C; Wang S; Chu P; Li S; Fu H; Sun T; Liu M; Yang Q; Zou H; Zhuang W
    BMC Microbiol; 2021 Apr; 21(1):118. PubMed ID: 33874906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses.
    Jiang H; Liao B; Ren X; Lei Y; Mace E; Fu T; Crouch JH
    J Genet Genomics; 2007 Jun; 34(6):544-54. PubMed ID: 17601614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum.
    Ben C; Debellé F; Berges H; Bellec A; Jardinaud MF; Anson P; Huguet T; Gentzbittel L; Vailleau F
    New Phytol; 2013 Aug; 199(3):758-72. PubMed ID: 23638965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf-to-Whole Plant Spread Bioassay for Pepper and
    Kwon JS; Nam JY; Yeom SI; Kang WH
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.).
    Yu B; Liu N; Huang L; Luo H; Zhou X; Lei Y; Yan L; Wang X; Chen W; Kang Y; Ding Y; Jin G; Pandey MK; Janila P; Kishan Sudini H; Varshney RK; Jiang H; Liu S; Liao B
    J Adv Res; 2024 Aug; 62():15-26. PubMed ID: 37739123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to
    Zhang C; Xie W; Fu H; Chen Y; Chen H; Cai T; Yang Q; Zhuang Y; Zhong X; Chen K; Gao M; Liu F; Wan Y; Pandey MK; Varshney RK; Zhuang W
    Front Plant Sci; 2022; 13():1048168. PubMed ID: 36684803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of the peanut CaM/CML gene family reveals that the AhCML69 gene is associated with resistance to Ralstonia solanacearum.
    Yang D; Chen T; Wu Y; Tang H; Yu J; Dai X; Zheng Y; Wan X; Yang Y; Tan X
    BMC Genomics; 2024 Feb; 25(1):200. PubMed ID: 38378471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.