These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 38515051)

  • 1. Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma.
    Ma Y; Gong Y; Qiu Q; Ma C; Yu S
    BMC Cancer; 2024 Mar; 24(1):363. PubMed ID: 38515051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics.
    Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J
    Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].
    Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y
    Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392
    [No Abstract]   [Full Text] [Related]  

  • 4. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?
    Liu X; Khalvati F; Namdar K; Fischer S; Lewis S; Taouli B; Haider MA; Jhaveri KS
    Eur Radiol; 2021 Jan; 31(1):244-255. PubMed ID: 32749585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
    Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M
    Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma.
    Wu C; Du X; Zhang Y; Zhu L; Chen J; Chen Y; Wei Y; Liu Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(16):15103-15112. PubMed ID: 37624395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma through dynamic contrast-enhanced magnetic resonance imaging-based radiomics.
    Zhang Y; He D; Liu J; Wei YG; Shi LL
    World J Gastroenterol; 2023 Apr; 29(13):2001-2014. PubMed ID: 37155523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preoperative Evaluation of Cervical Lymph Node Metastasis in Patients With Hashimoto's Thyroiditis Combined With Thyroid Papillary Carcinoma Using Machine Learning and Radiomics-Based Features: A Preliminary Study].
    Fu R; Deng S; Hu Y; Luo P; Yang H; Teng H; Zeng D; Ren J
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jul; 55(4):1026-1033. PubMed ID: 39170022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers.
    Li J; Li X; Ma J; Wang F; Cui S; Ye Z
    Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears.
    Cheng Q; Lin H; Zhao J; Lu X; Wang Q
    J Orthop Surg Res; 2024 Jan; 19(1):99. PubMed ID: 38297322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics.
    Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF
    BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatocellular carcinoma pathologic grade prediction using radiomics and machine learning models of gadoxetic acid-enhanced MRI: a two-center study.
    Han YE; Cho Y; Kim MJ; Park BJ; Sung DJ; Han NY; Sim KC; Park YS; Park BN
    Abdom Radiol (NY); 2023 Jan; 48(1):244-256. PubMed ID: 36131163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT radiomics based on different machine learning models for classifying gross tumor volume and normal liver tissue in hepatocellular carcinoma.
    Zhang HW; Huang DL; Wang YR; Zhong HS; Pang HW
    Cancer Imaging; 2024 Jan; 24(1):20. PubMed ID: 38279133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image.
    Zhu L; Wang F; Chen X; Dong Q; Xia N; Chen J; Li Z; Zhu C
    BMC Med Imaging; 2023 Jul; 23(1):94. PubMed ID: 37460944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules.
    Mokrane FZ; Lu L; Vavasseur A; Otal P; Peron JM; Luk L; Yang H; Ammari S; Saenger Y; Rousseau H; Zhao B; Schwartz LH; Dercle L
    Eur Radiol; 2020 Jan; 30(1):558-570. PubMed ID: 31444598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine-learning model based on dynamic contrast-enhanced MRI for preoperative differentiation between hepatocellular carcinoma and combined hepatocellular-cholangiocarcinoma.
    Deng X; Liao Z
    Clin Radiol; 2024 Jun; 79(6):e817-e825. PubMed ID: 38413354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion.
    Chen Y; Xia Y; Tolat PP; Long L; Jiang Z; Huang Z; Tang Q
    AJR Am J Roentgenol; 2021 Jun; 216(6):1510-1520. PubMed ID: 33826360
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.
    Li X; Li C; Wang H; Jiang L; Chen M
    PeerJ; 2024; 12():e17683. PubMed ID: 39026540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma by computed tomography and magnetic resonance imaging using the Bayesian method: a bi-center study.
    Ichikawa S; Isoda H; Shimizu T; Tamada D; Taura K; Togashi K; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5992-6002. PubMed ID: 32500195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    EBioMedicine; 2019 Dec; 50():156-165. PubMed ID: 31735556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.