These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38515129)

  • 1. Mechanism of self-recovery of hydrophobicity after surface damage of lotus leaf.
    Wang L; Shu L; Hu Q; Jiang X; Yang H; Wang H; Rao L
    Plant Methods; 2024 Mar; 20(1):47. PubMed ID: 38515129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
    Ensikat HJ; Ditsche-Kuru P; Neinhuis C; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():152-61. PubMed ID: 21977427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.
    Li J; Zheng J; Zhang J; Feng J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5875-9. PubMed ID: 27427647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication.
    Yun X; Xiong Z; He Y; Wang X
    RSC Adv; 2020 Jan; 10(9):5478-5486. PubMed ID: 35498279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.
    Nishimura R; Hyodo K; Sawaguchi H; Yamamoto Y; Nonomura Y; Mayama H; Yokojima S; Nakamura S; Uchida K
    J Am Chem Soc; 2016 Aug; 138(32):10299-303. PubMed ID: 27455376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Rain-Repellency and Droplet Bouncing Properties of
    Choubey R; Rowthu S
    ACS Omega; 2024 Jul; 9(26):28323-28338. PubMed ID: 38973880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking the lotus effect: influence of double roughness structures and slender pillars.
    Patankar NA
    Langmuir; 2004 Sep; 20(19):8209-13. PubMed ID: 15350093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure.
    Zhu C; Yu X; Lv J; Zhang J; Yang J; Hao N; Feng J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53394-53402. PubMed ID: 33175502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dewetting properties of lotus leaves.
    Zhang J; Sheng X; Jiang L
    Langmuir; 2009 Feb; 25(3):1371-6. PubMed ID: 19170641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.
    Watson GS; Green DW; Cribb BW; Brown CL; Meritt CR; Tobin MJ; Vongsvivut J; Sun M; Liang AP; Watson JA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24381-24392. PubMed ID: 28640578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and hydrophobicity of biomorphic ZnO/carbon based on a lotus-leaf template.
    Wang T; Chang L; Hatton B; Kong J; Chen G; Jia Y; Xiong D; Wong C
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():310-6. PubMed ID: 25175218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Texture and wettability of metallic lotus leaves.
    Frankiewicz C; Attinger D
    Nanoscale; 2016 Feb; 8(7):3982-90. PubMed ID: 26537609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.