These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38515298)

  • 1. Self-organization of PIP3 waves is controlled by the topology and curvature of cell membranes.
    Erisis S; Hörning M
    Biophys J; 2024 May; 123(9):1058-1068. PubMed ID: 38515298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Membrane Curvature Pins and Guides Excitable Membrane Waves in Chemotactic and Macropinocytic Cells - Biomedical Insights From an Innovative Simple Model.
    Hörning M; Bullmann T; Shibata T
    Front Cell Dev Biol; 2021; 9():670943. PubMed ID: 34604207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling self-organized spatio-temporal patterns of PIP₃ and PTEN during spontaneous cell polarization.
    Knoch F; Tarantola M; Bodenschatz E; Rappel WJ
    Phys Biol; 2014 Aug; 11(4):046002. PubMed ID: 25024302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis.
    Chen CL; Wang Y; Sesaki H; Iijima M
    Sci Signal; 2012 Jan; 5(209):ra10. PubMed ID: 22296834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state.
    Gerhardt M; Ecke M; Walz M; Stengl A; Beta C; Gerisch G
    J Cell Sci; 2014 Oct; 127(Pt 20):4507-17. PubMed ID: 25107368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin Waves and Dynamic Patterning of the Plasma Membrane.
    Gerisch G; Prassler J; Butterfield N; Ecke M
    Yale J Biol Med; 2019 Sep; 92(3):397-411. PubMed ID: 31543704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual inhibition between PTEN and PIP3 generates bistability for polarity in motile cells.
    Matsuoka S; Ueda M
    Nat Commun; 2018 Oct; 9(1):4481. PubMed ID: 30367048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIP3 waves and PTEN dynamics in the emergence of cell polarity.
    Gerisch G; Schroth-Diez B; Müller-Taubenberger A; Ecke M
    Biophys J; 2012 Sep; 103(6):1170-8. PubMed ID: 22995489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization of the phosphatidylinositol lipids signaling system for random cell migration.
    Arai Y; Shibata T; Matsuoka S; Sato MJ; Yanagida T; Ueda M
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12399-404. PubMed ID: 20562345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis.
    Shibata T; Nishikawa M; Matsuoka S; Ueda M
    J Cell Sci; 2012 Nov; 125(Pt 21):5138-50. PubMed ID: 22899720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitable dynamics of Ras triggers spontaneous symmetry breaking of PIP3 signaling in motile cells.
    Fukushima S; Matsuoka S; Ueda M
    J Cell Sci; 2019 Mar; 132(5):. PubMed ID: 30745337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.
    Kakumoto T; Nakata T
    PLoS One; 2013; 8(8):e70861. PubMed ID: 23951027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells.
    Taniguchi D; Ishihara S; Oonuki T; Honda-Kitahara M; Kaneko K; Sawai S
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5016-21. PubMed ID: 23479620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool.
    Ueda Y; Ii T; Aono Y; Sugimoto N; Shinji S; Yoshida H; Sato M
    Anal Sci; 2019 Jan; 35(1):57-63. PubMed ID: 30393242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dictyostelium myosin 1F and myosin 1E inhibit actin waves in a lipid-binding-dependent and motor-independent manner.
    Brzeska H; Bagnoli M; Korn ED; Titus MA
    Cytoskeleton (Hoboken); 2020 Aug; 77(8):295-302. PubMed ID: 32734648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis.
    Zhou K; Pandol S; Bokoch G; Traynor-Kaplan AE
    J Cell Sci; 1998 Jan; 111 ( Pt 2)():283-94. PubMed ID: 9405319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of cells that ignore the effects of PIP3 on cytoskeleton.
    Tang M; Iijima M; Devreotes P
    Cell Cycle; 2011 Sep; 10(17):2817-8. PubMed ID: 21869609
    [No Abstract]   [Full Text] [Related]  

  • 19. Correlated waves of actin filaments and PIP3 in Dictyostelium cells.
    Asano Y; Nagasaki A; Uyeda TQ
    Cell Motil Cytoskeleton; 2008 Dec; 65(12):923-34. PubMed ID: 18814278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse fountain flow of phosphatidylinositol-3,4-bisphosphate polarizes migrating cells.
    Li X; Pal DS; Biswas D; Iglesias PA; Devreotes PN
    EMBO J; 2021 Feb; 40(4):e105094. PubMed ID: 33586225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.