These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38515702)

  • 1. The impact of energy storage on the reliability of wind and solar power in New England.
    Freeman S; Agar E
    Heliyon; 2024 Mar; 10(6):e27652. PubMed ID: 38515702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geophysical constraints on the reliability of solar and wind power worldwide.
    Tong D; Farnham DJ; Duan L; Zhang Q; Lewis NS; Caldeira K; Davis SJ
    Nat Commun; 2021 Oct; 12(1):6146. PubMed ID: 34686663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wind and Solar Resource Droughts in California Highlight the Benefits of Long-Term Storage and Integration with the Western Interconnect.
    Rinaldi KZ; Dowling JA; Ruggles TH; Caldeira K; Lewis NS
    Environ Sci Technol; 2021 May; 55(9):6214-6226. PubMed ID: 33822592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable renewable energy penetration impact on productivity: A case study of poultry farming.
    Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É
    PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy.
    Deshmukh R; Phadke A; Callaway DS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Deep Reductions in Energy Storage Costs on Highly Reliable Wind and Solar Electricity Systems.
    Tong F; Yuan M; Lewis NS; Davis SJ; Caldeira K
    iScience; 2020 Sep; 23(9):101484. PubMed ID: 32927261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inefficient Building Electrification Will Require Massive Buildout of Renewable Energy and Seasonal Energy Storage.
    Buonocore JJ; Salimifard P; Magavi Z; Allen JG
    Sci Rep; 2022 Jul; 12(1):11931. PubMed ID: 35831376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacity factors for electrical power generation from renewable and nonrenewable sources.
    Bolson N; Prieto P; Patzek T
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2205429119. PubMed ID: 36538483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.
    Barbosa LS; Bogdanov D; Vainikka P; Breyer C
    PLoS One; 2017; 12(3):e0173820. PubMed ID: 28329023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-optimisation of wind and solar energy and intermittency for renewable generator site selection.
    Wu H; West SR
    Heliyon; 2024 Mar; 10(5):e26891. PubMed ID: 38444508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.
    Jacobson MZ; Delucchi MA; Cameron MA; Frew BA
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15060-5. PubMed ID: 26598655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Green Ammonia for Resilient and Cost-Competitive Islanded Electricity Generation from Hybrid Solar Photovoltaic-Wind Farms: A Case Study in South Africa.
    Sagel VN; Rouwenhorst KHR; Faria JA
    Energy Fuels; 2023 Sep; 37(18):14383-14392. PubMed ID: 37753452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification.
    Chien F; Ngo QT; Hsu CC; Chau KY; Mohsin M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65960-65973. PubMed ID: 34327644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supply-side options to reduce land requirements of fully renewable electricity in Europe.
    Tröndle T
    PLoS One; 2020; 15(8):e0236958. PubMed ID: 32760117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quantity-quality transition in the value of expanding wind and solar power generation.
    Antonini EGA; Ruggles TH; Farnham DJ; Caldeira K
    iScience; 2022 Apr; 25(4):104140. PubMed ID: 35434557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating an economic application of renewable generated hydrogen: A way forward for green economic performance and policy measures.
    Wu B; Zhai B; Mu H; Peng X; Wang C; Patwary AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):15144-15158. PubMed ID: 34628612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of techno-economic design andimplementation of solar-wind hybrid microgridsystem for a small community.
    Moomin AS; Yousif M; Khalid HA; Abbas Kazmi SA; Alghamdi TAH
    Heliyon; 2024 Sep; 10(17):e35985. PubMed ID: 39281632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal challenges for a California renewable- energy-driven grid.
    Abido MY; Mahmud Z; Sánchez-Pérez PA; Kurtz SR
    iScience; 2022 Jan; 25(1):103577. PubMed ID: 35005530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switch: a planning tool for power systems with large shares of intermittent renewable energy.
    Fripp M
    Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.
    Hittinger E; Azevedo IML
    Environ Sci Technol; 2017 Nov; 51(21):12988-12997. PubMed ID: 29016129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.