These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38515756)

  • 1. DeepLION2: deep multi-instance contrastive learning framework enhancing the prediction of cancer-associated T cell receptors by attention strategy on motifs.
    Qian X; Yang G; Li F; Zhang X; Zhu X; Lai X; Xiao X; Wang T; Wang J
    Front Immunol; 2024; 15():1345586. PubMed ID: 38515756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepLION: Deep Multi-Instance Learning Improves the Prediction of Cancer-Associated T Cell Receptors for Accurate Cancer Detection.
    Xu Y; Qian X; Zhang X; Lai X; Liu Y; Wang J
    Front Genet; 2022; 13():860510. PubMed ID: 35601486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BertTCR: a Bert-based deep learning framework for predicting cancer-related immune status based on T cell receptor repertoire.
    Zhang M; Cheng Q; Wei Z; Xu J; Wu S; Xu N; Zhao C; Yu L; Feng W
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39177262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AttnTAP: A Dual-input Framework Incorporating the Attention Mechanism for Accurately Predicting TCR-peptide Binding.
    Xu Y; Qian X; Tong Y; Li F; Wang K; Zhang X; Liu T; Wang J
    Front Genet; 2022; 13():942491. PubMed ID: 36072653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs.
    Springer I; Besser H; Tickotsky-Moskovitz N; Dvorkin S; Louzoun Y
    Front Immunol; 2020; 11():1803. PubMed ID: 32983088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLpTCR: an ensemble deep learning framework for predicting immunogenic peptide recognized by T cell receptor.
    Xu Z; Luo M; Lin W; Xue G; Wang P; Jin X; Xu C; Zhou W; Cai Y; Yang W; Nie H; Jiang Q
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TITAN: T-cell receptor specificity prediction with bimodal attention networks.
    Weber A; Born J; Rodriguez Martínez M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i237-i244. PubMed ID: 34252922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity.
    Jiang F; Guo Y; Ma H; Na S; Zhong W; Han Y; Wang T; Huang J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39007599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep autoregressive generative models capture the intrinsics embedded in T-cell receptor repertoires.
    Jiang Y; Li SC
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36752378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes.
    Dhusia K; Su Z; Wu Y
    Mol Immunol; 2021 Nov; 139():76-86. PubMed ID: 34455212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning.
    Chen J; Zhao B; Lin S; Sun H; Mao X; Wang M; Chu Y; Hong L; Wei DQ; Li M; Xiong Y
    Protein Sci; 2024 Jan; 33(1):e4841. PubMed ID: 37983648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences.
    Dahal-Koirala S; Balaban G; Neumann RS; Scheffer L; Lundin KEA; Greiff V; Sollid LM; Qiao SW; Sandve GK
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of TCR repertoire patterns linked with anti-cancer immunotherapy.
    Vandoren R; Gielis S; Laukens K; Meysman P
    Methods Cell Biol; 2024; 183():115-142. PubMed ID: 38548409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTCep: a deep learning framework for identification of T cell epitopes by harnessing fusion features.
    Zhang Y; Jian X; Xu L; Zhao J; Lu M; Lin Y; Xie L
    Front Genet; 2023; 14():1141535. PubMed ID: 37229205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigorous benchmarking of T-cell receptor repertoire profiling methods for cancer RNA sequencing.
    Peng K; Nowicki TS; Campbell K; Vahed M; Peng D; Meng Y; Nagareddy A; Huang YN; Karlsberg A; Miller Z; Brito J; Nadel B; Pak VM; Abedalthagafi MS; Burkhardt AM; Alachkar H; Ribas A; Mangul S
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37291798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs.
    Genolet R; Bobisse S; Chiffelle J; Arnaud M; Petremand R; Queiroz L; Michel A; Reichenbach P; Cesbron J; Auger A; Baumgaertner P; Guillaume P; Schmidt J; Irving M; Kandalaft LE; Speiser DE; Coukos G; Harari A
    Cell Rep Methods; 2023 Apr; 3(4):100459. PubMed ID: 37159666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCR clustering by contrastive learning on antigen specificity.
    Pertseva M; Follonier O; Scarcella D; Reddy ST
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39129361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences.
    Kim Y; Wang T; Xiong D; Wang X; Park S
    BMC Bioinformatics; 2022 Nov; 23(1):469. PubMed ID: 36348271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-aware contrastive learning for predicting T cell receptor-antigen binding specificity.
    Fang Y; Liu X; Liu H
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NetTCR-2.1: Lessons and guidance on how to develop models for TCR specificity predictions.
    Montemurro A; Jessen LE; Nielsen M
    Front Immunol; 2022; 13():1055151. PubMed ID: 36561755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.