These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38515841)
1. Next generation risk assessment: an Ebmeyer J; Najjar A; Lange D; Boettcher M; Voß S; Brandmair K; Meinhardt J; Kuehnl J; Hewitt NJ; Krueger CT; Schepky A Front Pharmacol; 2024; 15():1345992. PubMed ID: 38515841 [TBL] [Abstract][Full Text] [Related]
2. Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Najjar A; Kühnl J; Lange D; Géniès C; Jacques C; Fabian E; Zifle A; Hewitt NJ; Schepky A Front Pharmacol; 2024; 15():1421601. PubMed ID: 38962304 [No Abstract] [Full Text] [Related]
3. Next generation risk assessment for occupational chemical safety - A real world example with sodium-2-hydroxyethane sulfonate. Wood A; Breffa C; Chaine C; Cubberley R; Dent M; Eichhorn J; Fayyaz S; Grimm FA; Houghton J; Kiwamoto R; Kukic P; Lee M; Malcomber S; Martin S; Nicol B; Reynolds J; Riley G; Scott S; Smith C; Westmoreland C; Wieland W; Williams M; Wolton K; Zellmann T; Gutsell S Toxicology; 2024 Aug; 506():153835. PubMed ID: 38857863 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of PBPK models for genistein and daidzein for use in a next-generation risk assessment. Najjar A; Lange D; Géniès C; Kuehnl J; Zifle A; Jacques C; Fabian E; Hewitt N; Schepky A Front Pharmacol; 2024; 15():1421650. PubMed ID: 39421667 [TBL] [Abstract][Full Text] [Related]
6. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products. Baltazar MT; Cable S; Carmichael PL; Cubberley R; Cull T; Delagrange M; Dent MP; Hatherell S; Houghton J; Kukic P; Li H; Lee MY; Malcomber S; Middleton AM; Moxon TE; Nathanail AV; Nicol B; Pendlington R; Reynolds G; Reynolds J; White A; Westmoreland C Toxicol Sci; 2020 Jul; 176(1):236-252. PubMed ID: 32275751 [TBL] [Abstract][Full Text] [Related]
7. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Moxon TE; Li H; Lee MY; Piechota P; Nicol B; Pickles J; Pendlington R; Sorrell I; Baltazar MT Toxicol In Vitro; 2020 Mar; 63():104746. PubMed ID: 31837441 [TBL] [Abstract][Full Text] [Related]
8. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate. Cosmetic Ingredient Review Expert Panel Int J Toxicol; 2008; 27 Suppl 1():1-43. PubMed ID: 18569160 [TBL] [Abstract][Full Text] [Related]
9. Next generation risk assessment for skin sensitisation: A case study with propyl paraben. Assaf Vandecasteele H; Gautier F; Tourneix F; Vliet EV; Bury D; Alépée N Regul Toxicol Pharmacol; 2021 Jul; 123():104936. PubMed ID: 33905779 [TBL] [Abstract][Full Text] [Related]
10. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Gilmour N; Kern PS; Alépée N; Boislève F; Bury D; Clouet E; Hirota M; Hoffmann S; Kühnl J; Lalko JF; Mewes K; Miyazawa M; Nishida H; Osmani A; Petersohn D; Sekine S; van Vliet E; Klaric M Regul Toxicol Pharmacol; 2020 Oct; 116():104721. PubMed ID: 32645429 [TBL] [Abstract][Full Text] [Related]
11. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone. Yu L; Li H; Zhang C; Zhang Q; Guo J; Li J; Yuan H; Li L; Carmichael P; Peng S Environ Toxicol Pharmacol; 2020 Feb; 74():103296. PubMed ID: 31783317 [TBL] [Abstract][Full Text] [Related]
12. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine. Bessems JGM; Paini A; Gajewska M; Worth A Toxicology; 2017 Dec; 392():119-129. PubMed ID: 28288858 [TBL] [Abstract][Full Text] [Related]
13. Next Generation Risk Assessment of the Anti-Androgen Flutamide Including the Contribution of Its Active Metabolite Hydroxyflutamide. van Tongeren TCA; Carmichael PL; Rietjens IMCM; Li H Front Toxicol; 2022; 4():881235. PubMed ID: 35722059 [TBL] [Abstract][Full Text] [Related]
14. The phosphoproteome is a first responder in tiered cellular adaptation to chemical stress followed by proteomics and transcriptomics alteration. Chen P; Li Y; Long Q; Zuo T; Zhang Z; Guo J; Xu D; Li K; Liu S; Li S; Yin J; Chang L; Kukic P; Liddell M; Tulum L; Carmichael P; Peng S; Li J; Zhang Q; Xu P Chemosphere; 2023 Dec; 344():140329. PubMed ID: 37783352 [TBL] [Abstract][Full Text] [Related]
15. Skin sensitisation prediction using read-across, an illustrative next generation risk assessment (NGRA) case study for vanillin. Gautier F; Assaf Vandecasteele H; Tourneix F; van Vliet E; Alépée N; Bury D Regul Toxicol Pharmacol; 2023 Sep; 143():105458. PubMed ID: 37453556 [TBL] [Abstract][Full Text] [Related]
16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
17. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Berggren E; White A; Ouedraogo G; Paini A; Richarz AN; Bois FY; Exner T; Leite S; Grunsven LAV; Worth A; Mahony C Comput Toxicol; 2017 Nov; 4():31-44. PubMed ID: 29214231 [TBL] [Abstract][Full Text] [Related]
18. Advancing food safety risk assessment in China: development of new approach methodologies (NAMs). Yang D; Yang H; Shi M; Jia X; Sui H; Liu Z; Wu Y Front Toxicol; 2023; 5():1292373. PubMed ID: 38046399 [TBL] [Abstract][Full Text] [Related]
19. New framework for a non-animal approach adequately assures the safety of cosmetic ingredients - A case study on caffeine. Bury D; Alexander-White C; Clewell HJ; Cronin M; Desprez B; Detroyer A; Efremenko A; Firman J; Hack E; Hewitt NJ; Kenna G; Klaric M; Lester C; Mahony C; Ouedraogo G; Paini A; Schepky A; Regul Toxicol Pharmacol; 2021 Jul; 123():104931. PubMed ID: 33905778 [TBL] [Abstract][Full Text] [Related]
20. Deriving a Continuous Point of Departure for Skin Sensitization Risk Assessment Using a Bayesian Network Model. Tourneix F; Carron L; Jouffe L; Hoffmann S; Alépée N Toxics; 2024 Jul; 12(8):. PubMed ID: 39195638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]