These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38515864)
21. Unraveling the hidden complexity of quasideterministic ratchets: Random walks, graphs, and circle maps. Blanch-Mercader C; Orlandi JG; Casademunt J Phys Rev E; 2020 Jan; 101(1-1):012203. PubMed ID: 32069660 [TBL] [Abstract][Full Text] [Related]
22. Large Deviations for Continuous Time Random Walks. Wang W; Barkai E; Burov S Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286470 [TBL] [Abstract][Full Text] [Related]
23. Estimation of the Distribution of Random Parameters in Discrete Time Abstract Parabolic Systems with Unbounded Input and Output: Approximation and Convergence. Sirlanci M; Luczak SE; Rosen IG Commun Appl Anal; 2019; 23(2):287-329. PubMed ID: 31824131 [TBL] [Abstract][Full Text] [Related]
24. A characterization of Chover-type law of iterated logarithm. Li D; Chen P Springerplus; 2014; 3():386. PubMed ID: 25133089 [TBL] [Abstract][Full Text] [Related]
25. Law of large numbers for the drift of the two-dimensional wreath product. Erschler A; Zheng T Probab Theory Relat Fields; 2022; 182(3-4):999-1033. PubMed ID: 35509287 [TBL] [Abstract][Full Text] [Related]
26. Random walks on hyperbolic spaces: Concentration inequalities and probabilistic Tits alternative. Aoun R; Sert C Probab Theory Relat Fields; 2022; 184(1-2):323-365. PubMed ID: 36277116 [TBL] [Abstract][Full Text] [Related]
27. Distribution of the time between maximum and minimum of random walks. Mori F; Majumdar SN; Schehr G Phys Rev E; 2020 May; 101(5-1):052111. PubMed ID: 32575204 [TBL] [Abstract][Full Text] [Related]
28. Limit theorem for continuous-time quantum walk on the line. Konno N Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026113. PubMed ID: 16196650 [TBL] [Abstract][Full Text] [Related]
29. Simulation of quantum walks on a circle with polar molecules via optimal control. Ding YK; Zhang ZY; Liu JM J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38010330 [TBL] [Abstract][Full Text] [Related]
30. Poissonian steady states: from stationary densities to stationary intensities. Eliazar I Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041140. PubMed ID: 23214562 [TBL] [Abstract][Full Text] [Related]
31. Random walks in a moderately sparse random environment. Buraczewski D; Dyszewski P; Iksanov A; Marynych A; Roitershtein A Electron J Probab; 2019; 24():. PubMed ID: 31396009 [TBL] [Abstract][Full Text] [Related]
32. Transition records of stationary Markov chains. Naudts J; Van der Straeten E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):040103. PubMed ID: 17155010 [TBL] [Abstract][Full Text] [Related]
33. Distribution of the span of one-dimensional confined random processes before hitting a target. Klinger J; Voituriez R; Bénichou O Phys Rev E; 2021 Mar; 103(3-1):032107. PubMed ID: 33862775 [TBL] [Abstract][Full Text] [Related]
34. Random walk on the Poincaré disk induced by a group of Möbius transformations. McCarthy C; Nop G; Rastegar R; Roitershtein A Markov Process Relat Fields; 2019; 25(5):915-940. PubMed ID: 32021054 [TBL] [Abstract][Full Text] [Related]
35. A stochastic model of tumor response to fractionated radiation: limit theorems and rate of convergence. Hanin LG Math Biosci; 2004 Sep; 191(1):1-17. PubMed ID: 15312741 [TBL] [Abstract][Full Text] [Related]
37. Return Probability of Quantum and Correlated Random Walks. Kiumi C; Konno N; Tamura S Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626469 [TBL] [Abstract][Full Text] [Related]
38. Subdiffusive dynamics in photonic random walks probed with classical light. Longhi S Opt Lett; 2024 Oct; 49(20):5989-5992. PubMed ID: 39404589 [TBL] [Abstract][Full Text] [Related]
39. Aggregation is the key to succeed in random walks. Hernandez-Suarez CM Math Biosci; 2016 Sep; 279():33-7. PubMed ID: 27404210 [TBL] [Abstract][Full Text] [Related]
40. Predicting population extinction in lattice-based birth-death-movement models. Johnston ST; Simpson MJ; Crampin EJ Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20200089. PubMed ID: 32831592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]