These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Continuous-time random walk for open systems: fluctuation theorems and counting statistics. Esposito M; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051119. PubMed ID: 18643038 [TBL] [Abstract][Full Text] [Related]
44. Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks. Caracciolo S; Papinutto M; Pelissetto A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031106. PubMed ID: 11909028 [TBL] [Abstract][Full Text] [Related]
45. Winding angles of long lattice walks. Hammer Y; Kantor Y J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124 [TBL] [Abstract][Full Text] [Related]
46. On the stochastic representation and Markov approximation of Hamiltonian systems. Gaveau B; Moreau M Chaos; 2020 Aug; 30(8):083104. PubMed ID: 32872809 [TBL] [Abstract][Full Text] [Related]
47. Convergence of continuous-time quantum walks on the line. Gottlieb AD Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):047102. PubMed ID: 16383575 [TBL] [Abstract][Full Text] [Related]
48. Fractional Edgeworth expansion: Corrections to the Gaussian-Lévy central-limit theorem. Hazut N; Medalion S; Kessler DA; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052124. PubMed ID: 26066136 [TBL] [Abstract][Full Text] [Related]
49. Self-avoiding random walks at finite concentrations: The bulk phase limit. Wall FT; Seitz WA Proc Natl Acad Sci U S A; 1979 Jan; 76(1):8-9. PubMed ID: 16592615 [TBL] [Abstract][Full Text] [Related]
50. Random walk to a nonergodic equilibrium concept. Bel G; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016125. PubMed ID: 16486234 [TBL] [Abstract][Full Text] [Related]
51. An extension of Geiringer's theorem for a wide class of evolutionary search algorithms. Mitavskiy B; Rowe J Evol Comput; 2006; 14(1):87-118. PubMed ID: 16536892 [TBL] [Abstract][Full Text] [Related]
52. Constrained spin-dynamics description of random walks on hierarchical scale-free networks. Noh JD; Rieger H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036111. PubMed ID: 15089365 [TBL] [Abstract][Full Text] [Related]
53. Universal to nonuniversal transition of the statistics of rare events during the spread of random walks. Singh RK; Burov S Phys Rev E; 2023 Nov; 108(5):L052102. PubMed ID: 38115504 [TBL] [Abstract][Full Text] [Related]
54. Localization transition of biased random walks on random networks. Sood V; Grassberger P Phys Rev Lett; 2007 Aug; 99(9):098701. PubMed ID: 17931043 [TBL] [Abstract][Full Text] [Related]
55. Depinning Transition of Charge-Density Waves: Mapping onto O(n) Symmetric ϕ^{4} Theory with n→-2 and Loop-Erased Random Walks. Wiese KJ; Fedorenko AA Phys Rev Lett; 2019 Nov; 123(19):197601. PubMed ID: 31765182 [TBL] [Abstract][Full Text] [Related]
56. Quantum random walks on congested lattices and the effect of dephasing. Motes KR; Gilchrist A; Rohde PP Sci Rep; 2016 Jan; 6():19864. PubMed ID: 26812924 [TBL] [Abstract][Full Text] [Related]
57. Nearly reducible finite Markov chains: Theory and algorithms. Sharpe DJ; Wales DJ J Chem Phys; 2021 Oct; 155(14):140901. PubMed ID: 34654307 [TBL] [Abstract][Full Text] [Related]
58. Single integrodifferential wave equation for a Lévy walk. Fedotov S Phys Rev E; 2016 Feb; 93(2):020101. PubMed ID: 26986271 [TBL] [Abstract][Full Text] [Related]
59. Lévy walk dynamics in mixed potentials from the perspective of random walk theory. Zhou T; Xu P; Deng W Phys Rev E; 2021 Mar; 103(3-1):032151. PubMed ID: 33862717 [TBL] [Abstract][Full Text] [Related]
60. Aftermath epidemics: Percolation on the sites visited by generalized random walks. Feshanjerdi M; Masoudi AA; Grassberger P; Ebrahimi M Phys Rev E; 2023 Aug; 108(2-1):024312. PubMed ID: 37723758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]