BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 38516158)

  • 1. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.
    Tundwal A; Kumar H; Binoj BJ; Sharma R; Kumar G; Kumari R; Dhayal A; Yadav A; Singh D; Kumar P
    RSC Adv; 2024 Mar; 14(14):9406-9439. PubMed ID: 38516158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications.
    Choi E; Chae SJ; Kim A; Kang KW; Oh MS; Kwon SH; Yoon SP; Pyo SG
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9104-9. PubMed ID: 26726651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors.
    Tiwari SK; Thakur AK; Adhikari A; Zhu Y; Wang N
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in polyaniline-based composites as electrode materials for pliable supercapacitors.
    Shanmuganathan MAA; Raghavan A; Ghosh S
    Phys Chem Chem Phys; 2023 Mar; 25(11):7611-7628. PubMed ID: 36877126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible supercapacitor electrodes using metal-organic frameworks.
    Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L
    Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials.
    Chernysheva DV; Smirnova NV; Ananikov VP
    ChemSusChem; 2024 Mar; 17(5):e202301367. PubMed ID: 37948061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Metal Chalcogenides (MX;
    Theerthagiri J; Karuppasamy K; Durai G; Rana AUHS; Arunachalam P; Sangeetha K; Kuppusami P; Kim HS
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29671823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
    Ma Y; Chang H; Zhang M; Chen Y
    Adv Mater; 2015 Sep; 27(36):5296-308. PubMed ID: 26293692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.
    Wang W; Guo S; Lee I; Ahmed K; Zhong J; Favors Z; Zaera F; Ozkan M; Ozkan CS
    Sci Rep; 2014 Mar; 4():4452. PubMed ID: 24663242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of transition metal-based composite materials for supercapacitor electrodes.
    Cui M; Meng X
    Nanoscale Adv; 2020 Dec; 2(12):5516-5528. PubMed ID: 36133879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.