These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38516562)
1. Correction factors for the drag and pressure flows of power-law fluids through rectangular ducts. Marschik C; Roland W Polym Eng Sci; 2023 Jul; 63(7):2043-2058. PubMed ID: 38516562 [TBL] [Abstract][Full Text] [Related]
2. Effects of Melt Temperature and Non-Isothermal Flow in Design of Coat Hanger Dies Based on Flow Network of Non-Newtonian Fluids. Razeghiyadaki A; Wei D; Perveen A; Zhang D; Wang Y Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956676 [TBL] [Abstract][Full Text] [Related]
3. Extended Regression Models for Predicting the Pumping Capability and Viscous Dissipation of Two-Dimensional Flows in Single-Screw Extrusion. Roland W; Kommenda M; Marschik C; Miethlinger J Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960318 [TBL] [Abstract][Full Text] [Related]
4. A Multi-Rheology Design Method of Sheeting Polymer Extrusion Dies Based on Flow Network and the Winter-Fritz Design Equation. Razeghiyadaki A; Wei D; Perveen A; Zhang D Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34200559 [TBL] [Abstract][Full Text] [Related]
5. Melt Conveying in Single-Screw Extruders: Modeling and Simulation. Marschik C; Roland W; Osswald TA Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267696 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow. Vaseghnia H; Jettestuen E; Giljarhus KET; Aursjø O; Hiorth A Phys Rev E; 2024 Jul; 110(1-2):015305. PubMed ID: 39160911 [TBL] [Abstract][Full Text] [Related]
7. A Network-Theory-Based Comparative Study of Melt-Conveying Models in Single-Screw Extrusion: A. Isothermal Flow. Marschik C; Roland W; Miethlinger J Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960854 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetics of polymeric fluids in narrow rectangular confinements. Natu A; Ghosh U Soft Matter; 2021 Oct; 17(38):8712-8729. PubMed ID: 34522922 [TBL] [Abstract][Full Text] [Related]
9. Application of Network Analysis to Flow Systems with Alternating Wave Channels: Part B. (Superimposed Drag-Pressure Flows in Extrusion). Marschik C; Roland W; Dörner M; Schaufler S; Schöppner V; Steinbichler G Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32846905 [TBL] [Abstract][Full Text] [Related]
10. Simulation of High-Viscosity Generalized Newtonian Fluid Flows in the Mixing Section of a Screw Extruder Using the Lattice Boltzmann Model. Liu L; Meng Z; Zhang Y; Sun Y ACS Omega; 2023 Dec; 8(50):47991-48018. PubMed ID: 38144068 [TBL] [Abstract][Full Text] [Related]
11. Induced magnetic field and viscous dissipation on flows of two immiscible fluids in a rectangular channel. Shah NA; Alrabaiah H; Vieru D; Yook SJ Sci Rep; 2022 Jan; 12(1):39. PubMed ID: 34996904 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method. Khali S; Nebbali R; Ameziani DE; Bouhadef K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053002. PubMed ID: 23767615 [TBL] [Abstract][Full Text] [Related]
13. Application of Network Analysis to Flow Systems with Alternating Wave Channels: Part A (Pressure Flows). Marschik C; Dörner M; Roland W; Miethlinger J; Schöppner V; Steinbichler G Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31547371 [TBL] [Abstract][Full Text] [Related]
14. Modeling of Shear Flows over Superhydrophobic Surfaces: From Newtonian to Non-Newtonian Fluids. Rahmani H; Larachi F; Taghavi SM ACS Eng Au; 2024 Apr; 4(2):166-192. PubMed ID: 38646519 [TBL] [Abstract][Full Text] [Related]
15. Leakage-Flow Models for Screw Extruders. Marschik C; Roland W; Dörner M; Steinbichler G; Schöppner V Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207753 [TBL] [Abstract][Full Text] [Related]
16. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Park HM; Lee WM Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093 [TBL] [Abstract][Full Text] [Related]
17. Flow of power-law fluids in self-affine fracture channels. Yan Y; Koplik J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036315. PubMed ID: 18517519 [TBL] [Abstract][Full Text] [Related]
18. On the mechanism of elasto-inertial turbulence. Dubief Y; Terrapon VE; Soria J Phys Fluids (1994); 2013 Nov; 25(11):110817. PubMed ID: 24170968 [TBL] [Abstract][Full Text] [Related]
19. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect. Chaube MK; Tripathi D; Bég OA; Sharma S; Pandey VS Appl Bionics Biomech; 2015; 2015():152802. PubMed ID: 27057132 [TBL] [Abstract][Full Text] [Related]
20. Abnormal Rheological Phenomena in Newtonian Fluids in Electroosmotic Flows in a Nanocapillary. Xue J; Zhao W; Nie T; Zhang C; Ma S; Wang G; Liu S; Li J; Gu C; Bai J; Wang K Langmuir; 2018 Dec; 34(50):15203-15210. PubMed ID: 30418030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]