These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 38516629)
1. Rationally Designed Magnetic Nanoparticles for Cochlear Drug Delivery: Synthesis, Characterization, and In Vitro Biocompatibility in a Murine Model. Goyal MM; Zhou NJ; Vincent PFY; Hoffman ES; Goel S; Wang C; Sun DQ Otol Neurotol Open; 2022 Sep; 2(3):e013. PubMed ID: 38516629 [TBL] [Abstract][Full Text] [Related]
2. Computational methodology for drug delivery to the inner ear using magnetic nanoparticle aggregates. Talaśka K; Wojtkowiak D; Wilczyński D; Ferreira A Comput Methods Programs Biomed; 2022 Jun; 221():106860. PubMed ID: 35576687 [TBL] [Abstract][Full Text] [Related]
3. Magnetic core-shell nanoparticles for drug delivery by nebulization. Verma NK; Crosbie-Staunton K; Satti A; Gallagher S; Ryan KB; Doody T; McAtamney C; MacLoughlin R; Galvin P; Burke CS; Volkov Y; Gun'ko YK J Nanobiotechnology; 2013 Jan; 11():1. PubMed ID: 23343139 [TBL] [Abstract][Full Text] [Related]
4. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. Kaltenbach JA; Falzarano PR J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004 [TBL] [Abstract][Full Text] [Related]
5. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Cai H; Liang Z; Huang W; Wen L; Chen G Int J Pharm; 2017 Oct; 532(1):55-65. PubMed ID: 28870763 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells. Prokopiou E D; Pissas M; Fibbi G; Margheri F; Kalska-Szostko B; Papanastasiou G; Jansen M; Wang J; Laurenzana A; Efthimiadou K E Toxicol In Vitro; 2021 Apr; 72():105094. PubMed ID: 33460736 [TBL] [Abstract][Full Text] [Related]
7. Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. Singh RK; Kim TH; Patel KD; Knowles JC; Kim HW J Biomed Mater Res A; 2012 Jul; 100(7):1734-42. PubMed ID: 22447364 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications. Chen BW; He YC; Sung SY; Le TTH; Hsieh CL; Chen JY; Wei ZH; Yao DJ Sci Technol Adv Mater; 2020 Jul; 21(1):471-481. PubMed ID: 32939172 [TBL] [Abstract][Full Text] [Related]
10. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Zhang W; Zhang Y; Löbler M; Schmitz KP; Ahmad A; Pyykkö I; Zou J Int J Nanomedicine; 2011; 6():535-46. PubMed ID: 21468356 [TBL] [Abstract][Full Text] [Related]
11. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea. Drescher MJ; Drescher DG; Khan KM; Hatfield JS; Ramakrishnan NA; Abu-Hamdan MD; Lemonnier LA Neuroscience; 2006 Sep; 142(1):139-64. PubMed ID: 16876955 [TBL] [Abstract][Full Text] [Related]
12. Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro. Jabeen T; Holt JC; Becker JR; Nam JH Biophys J; 2020 Jul; 119(2):314-325. PubMed ID: 32579963 [TBL] [Abstract][Full Text] [Related]
13. A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction. Panja S; Maji S; Maiti TK; Chattopadhyay S ACS Appl Mater Interfaces; 2015 Nov; 7(43):24229-41. PubMed ID: 26458134 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Rezaei B; Yari P; Sanders SM; Wang H; Chugh VK; Liang S; Mostufa S; Xu K; Wang JP; Gómez-Pastora J; Wu K Small; 2024 Feb; 20(5):e2304848. PubMed ID: 37732364 [TBL] [Abstract][Full Text] [Related]
15. A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. Perkins RE; Morest DK J Comp Neurol; 1975 Sep; 163(2):129-58. PubMed ID: 1100684 [TBL] [Abstract][Full Text] [Related]
16. Cochlear delivery of fibroblast growth factor 1 and its effects on apoptosis and cell cycling in noise-exposed guinea pig ears. David EA; Jackson-Boeters L; Daley T; MacRae DL J Otolaryngol; 2002 Oct; 31(5):304-12. PubMed ID: 12512896 [TBL] [Abstract][Full Text] [Related]
17. Morphology of labeled afferent fibers in the guinea pig cochlea. Brown MC J Comp Neurol; 1987 Jun; 260(4):591-604. PubMed ID: 3611412 [TBL] [Abstract][Full Text] [Related]
18. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Rastegari B; Karbalaei-Heidari HR; Zeinali S; Sheardown H Colloids Surf B Biointerfaces; 2017 Oct; 158():589-601. PubMed ID: 28750341 [TBL] [Abstract][Full Text] [Related]
19. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Yallapu MM; Foy SP; Jain TK; Labhasetwar V Pharm Res; 2010 Nov; 27(11):2283-95. PubMed ID: 20845067 [TBL] [Abstract][Full Text] [Related]
20. [Synthesis of cell penetrating peptide decorated magnetic nanoparticles loading cisplatin for nasopharyngeal cancer therapy]. Quan LM; Zhong Y; Weng HH Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Jul; 32(13):963-968. PubMed ID: 29986554 [No Abstract] [Full Text] [Related] [Next] [New Search]