BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38516807)

  • 21. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.
    Wallace GT; Kim TL; Neufeld CJ
    Conserv Physiol; 2014; 2(1):cou041. PubMed ID: 27293662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chill-coma tolerance, a major climatic adaptation among Drosophila species.
    Gibert P; Moreteau B; Pétavy G; Karan D; David JR
    Evolution; 2001 May; 55(5):1063-8. PubMed ID: 11430643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).
    Tarusikirwa VL; Mutamiswa R; English S; Chidawanyika F; Nyamukondiwa C
    J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asian gypsy moth (Lymantria dispar L.) populations: Tolerance of eggs to extreme winter temperatures.
    Ananko GG; Kolosov AV
    J Therm Biol; 2021 Dec; 102():103123. PubMed ID: 34863486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline.
    Campbell-Staton SC; Bare A; Losos JB; Edwards SV; Cheviron ZA
    Mol Ecol; 2018 May; 27(9):2243-2255. PubMed ID: 29633453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ontogenetic responses of physiological fitness in
    Mbande A; Mutamiswa R; Chidawanyika F
    Bull Entomol Res; 2023 Aug; 113(4):449-455. PubMed ID: 37587795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological correlates of chill susceptibility in Lepidoptera.
    Andersen MK; Jensen SO; Overgaard J
    J Insect Physiol; 2017 Apr; 98():317-326. PubMed ID: 28188725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii.
    Ragland GJ; Kingsolver JG
    Evolution; 2008 Jun; 62(6):1345-57. PubMed ID: 18331458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle membrane potential and insect chill coma.
    Andersen JL; MacMillan HA; Overgaard J
    J Exp Biol; 2015 Aug; 218(Pt 16):2492-5. PubMed ID: 26089529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris.
    Spindelböck JP; Cook Z; Daws MI; Heegaard E; Måren IE; Vandvik V
    Ann Bot; 2013 Sep; 112(5):801-10. PubMed ID: 23884396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long- and short-term phenotypic plasticity.
    Noh S; Everman ER; Berger CM; Morgan TJ
    Ecol Evol; 2017 Jul; 7(14):5248-5257. PubMed ID: 28770063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae.
    Ilijin L; Grčić A; Mrdaković M; Vlahović M; Todorović D; Filipović A; Matić D; Perić Mataruga V
    Sci Rep; 2022 Dec; 12(1):21858. PubMed ID: 36528655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cold Tolerance of Halyomorpha halys (Hemiptera: Pentatomidae) Across Geographic and Temporal Scales.
    Cira TM; Venette RC; Aigner J; Kuhar T; Mullins DE; Gabbert SE; Hutchison WD
    Environ Entomol; 2016 Apr; 45(2):484-91. PubMed ID: 26744454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paradoxical acclimation responses in the thermal performance of insect immunity.
    Ferguson LV; Heinrichs DE; Sinclair BJ
    Oecologia; 2016 May; 181(1):77-85. PubMed ID: 26846428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
    Nilson TL; Sinclair BJ; Roberts SP
    J Insect Physiol; 2006 Oct; 52(10):1027-33. PubMed ID: 16996534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects.
    Andersen MK; Overgaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():10-16. PubMed ID: 30910613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.
    Ransberry VE; MacMillan HA; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(6):553-9. PubMed ID: 22030848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster.
    Macdonald SS; Rako L; Batterham P; Hoffmann AA
    J Insect Physiol; 2004 Aug; 50(8):695-700. PubMed ID: 15288203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.