These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38516852)
1. An electrochemiluminescence microsensor based on DNA-silver nanoclusters amplification for detecting cellular adenosine triphosphate. Wu G; Chen J; Dou J; He X; Li HF; Lin JM Anal Methods; 2024 Apr; 16(14):2019-2024. PubMed ID: 38516852 [TBL] [Abstract][Full Text] [Related]
2. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells. Shi HW; Wu MS; Du Y; Xu JJ; Chen HY Biosens Bioelectron; 2014 May; 55():459-63. PubMed ID: 24441543 [TBL] [Abstract][Full Text] [Related]
3. [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Hu L; Bian Z; Li H; Han S; Yuan Y; Gao L; Xu G Anal Chem; 2009 Dec; 81(23):9807-11. PubMed ID: 19891459 [TBL] [Abstract][Full Text] [Related]
4. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Wu MS; Liu Z; Shi HW; Chen HY; Xu JJ Anal Chem; 2015 Jan; 87(1):530-7. PubMed ID: 25457383 [TBL] [Abstract][Full Text] [Related]
5. CRISPR-Cas12a-based efficient electrochemiluminescence biosensor for ATP detection. Xu ZH; Zhao ZY; Wang H; Wang SM; Chen HY; Xu JJ Anal Chim Acta; 2021 Dec; 1188():339180. PubMed ID: 34794559 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Zhu Y; Hu XC; Shi S; Gao RR; Huang HL; Zhu YY; Lv XY; Yao TM Biosens Bioelectron; 2016 May; 79():205-12. PubMed ID: 26706942 [TBL] [Abstract][Full Text] [Related]
7. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Wu MS; Yuan DJ; Xu JJ; Chen HY Anal Chem; 2013 Dec; 85(24):11960-5. PubMed ID: 24215536 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Sensing Performance of a Microchannel-Based Electrochemiluminescence Biosensor for Adenosine Triphosphate via a dsDNA Superstructure Amplification Strategy. Huang Y; Li W; Zheng J; Luo F; Qiu B; Wang J; Lin C; Lin Z ACS Appl Mater Interfaces; 2022 Aug; 14(32):37222-37228. PubMed ID: 35917502 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive electrochemiluminescence biosensor based on dual quenching effects of silver nanoclusters and multiple cycling amplification for detection of ATP. Tan L; Ge J; Jie G; Zhou H; Wang H Talanta; 2024 May; 271():125668. PubMed ID: 38237282 [TBL] [Abstract][Full Text] [Related]
10. In Situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Chen A; Ma S; Zhuo Y; Chai Y; Yuan R Anal Chem; 2016 Mar; 88(6):3203-10. PubMed ID: 26885698 [TBL] [Abstract][Full Text] [Related]
11. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Khoshfetrat SM; Bagheri H; Mehrgardi MA Biosens Bioelectron; 2018 Feb; 100():382-388. PubMed ID: 28950248 [TBL] [Abstract][Full Text] [Related]
12. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator. Huang X; Li Y; Zhang X; Zhang X; Chen Y; Gao W Analyst; 2015 Sep; 140(17):6015-24. PubMed ID: 26191542 [TBL] [Abstract][Full Text] [Related]
13. Aptamer responsive DNA Functionalized hydrogels electrochemiluminescence biosensor for the detection of adenosine triphosphate. Wang S; Wang J; Zhu L; Li C; Wu J; Ge S; Yu J Biosens Bioelectron; 2024 Oct; 261():116476. PubMed ID: 38852325 [TBL] [Abstract][Full Text] [Related]
14. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519 [TBL] [Abstract][Full Text] [Related]
15. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Xu J; Wei C Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406 [TBL] [Abstract][Full Text] [Related]
16. Double bipolar electrode electrochemiluminescence color switch for food-borne pathogens detection. Tao Q; Tang N; Jiang Y; Chen B; Liu Y; Xiong X; Liu S Biosens Bioelectron; 2023 Oct; 237():115452. PubMed ID: 37311408 [TBL] [Abstract][Full Text] [Related]
17. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Jin G; Wang C; Yang L; Li X; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Jan; 63():166-171. PubMed ID: 25086328 [TBL] [Abstract][Full Text] [Related]
18. Direct Observation of Oxidation Reaction via Closed Bipolar Electrode-Anodic Electrochemiluminescence Protocol: Structural Property and Sensing Applications. Zhang JD; Lu L; Zhu XF; Zhang LJ; Yun S; Duanmu CS; He L ACS Sens; 2018 Nov; 3(11):2351-2358. PubMed ID: 30350590 [TBL] [Abstract][Full Text] [Related]
19. An aptamer-based electrochemiluminescent biosensor for ATP detection. Yao W; Wang L; Wang H; Zhang X; Li L Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209 [TBL] [Abstract][Full Text] [Related]
20. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D Talanta; 2016; 146():23-8. PubMed ID: 26695229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]