These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38516975)

  • 21. Are SMC Complexes Loop Extruding Factors? Linking Theory With Fact.
    Baxter J; Oliver AW; Schalbetter SA
    Bioessays; 2019 Jan; 41(1):e1800182. PubMed ID: 30506702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals.
    Yu D; Chen G; Wang Y; Wang Y; Lin R; Liu N; Zhu P; Liu H; Hu T; Feng R; Feng H; Lan F; Cai J; Chen H
    EMBO Rep; 2022 Nov; 23(11):e54853. PubMed ID: 36129789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LoopSage: An energy-based Monte Carlo approach for the loop extrusion modeling of chromatin.
    Korsak S; Plewczynski D
    Methods; 2024 Mar; 223():106-117. PubMed ID: 38295892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin jets define the properties of cohesin-driven in vivo loop extrusion.
    Guo Y; Al-Jibury E; Garcia-Millan R; Ntagiantas K; King JWD; Nash AJ; Galjart N; Lenhard B; Rueckert D; Fisher AG; Pruessner G; Merkenschlager M
    Mol Cell; 2022 Oct; 82(20):3769-3780.e5. PubMed ID: 36182691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin Loop Extrusion and Chromatin Unknotting.
    Racko D; Benedetti F; Goundaroulis D; Stasiak A
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA polymerases as moving barriers to condensin loop extrusion.
    Brandão HB; Paul P; van den Berg AA; Rudner DZ; Wang X; Mirny LA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20489-20499. PubMed ID: 31548377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding.
    Conte M; Irani E; Chiariello AM; Abraham A; Bianco S; Esposito A; Nicodemi M
    Nat Commun; 2022 Jul; 13(1):4070. PubMed ID: 35831310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of cohesin-chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion.
    Golov AK; Golova AV; Gavrilov AA; Razin SV
    Epigenetics Chromatin; 2021 Jul; 14(1):36. PubMed ID: 34321070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome folding through loop extrusion by SMC complexes.
    Davidson IF; Peters JM
    Nat Rev Mol Cell Biol; 2021 Jul; 22(7):445-464. PubMed ID: 33767413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.
    Tark-Dame M; Jerabek H; Manders EM; van der Wateren IM; Heermann DW; van Driel R
    PLoS Comput Biol; 2014 Oct; 10(10):e1003877. PubMed ID: 25299688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SMC complexes: Lifting the lid on loop extrusion.
    Higashi TL; Uhlmann F
    Curr Opin Cell Biol; 2022 Feb; 74():13-22. PubMed ID: 35016058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription shapes 3D chromatin organization by interacting with loop extrusion.
    Banigan EJ; Tang W; van den Berg AA; Stocsits RR; Wutz G; Brandão HB; Busslinger GA; Peters JM; Mirny LA
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2210480120. PubMed ID: 36897969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion.
    Zhang S; Übelmesser N; Barbieri M; Papantonis A
    Nat Genet; 2023 May; 55(5):832-840. PubMed ID: 37012454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA loop extrusion by human cohesin.
    Davidson IF; Bauer B; Goetz D; Tang W; Wutz G; Peters JM
    Science; 2019 Dec; 366(6471):1338-1345. PubMed ID: 31753851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing pseudotopological and nontopological models for SMC-driven DNA loop extrusion against roadblock-traversal experiments.
    Barth R; Pradhan B; Kim E; Davidson IF; van der Torre J; Peters JM; Dekker C
    Sci Rep; 2023 May; 13(1):8100. PubMed ID: 37208374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crumpled polymer with loops recapitulates key features of chromosome organization.
    Polovnikov KE; Slavov B; Belan S; Imakaev M; Brandão HB; Mirny LA
    Phys Rev X; 2023; 13(4):. PubMed ID: 38774252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.