These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38517348)

  • 21. A cysteine selenosulfide redox switch for protein chemical synthesis.
    Diemer V; Ollivier N; Leclercq B; Drobecq H; Vicogne J; Agouridas V; Melnyk O
    Nat Commun; 2020 May; 11(1):2558. PubMed ID: 32444769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accessing posttranslationally modified proteins through thiol positioning.
    Kumar KS; Brik A
    J Pept Sci; 2010 Oct; 16(10):524-9. PubMed ID: 20862719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation.
    Gui Y; Qiu L; Li Y; Li H; Dong S
    J Am Chem Soc; 2016 Apr; 138(14):4890-9. PubMed ID: 26982082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Precise Protein Semisynthesis through Ligation-Desulfurization Chemistry in Combination with Phenacyl Protection of Native Cysteines.
    Mukherjee S; Matveenko M; Becker CFW
    Methods Mol Biol; 2020; 2133():343-358. PubMed ID: 32144676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and Cysteine-Specific Modification of Peptides, Proteins and Bacteriophage Using Chlorooximes.
    Chen FJ; Zheng M; Nobile V; Gao J
    Chemistry; 2022 Apr; 28(20):e202200058. PubMed ID: 35167137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allylic disulfide rearrangement and desulfurization: mild, electrophile-free thioether formation from thiols.
    Crich D; Brebion F; Krishnamurthy V
    Org Lett; 2006 Aug; 8(16):3593-6. PubMed ID: 16869668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel thiol-labile cysteine protecting group for peptide synthesis based on a pyridazinedione (PD) scaffold.
    Spears RJ; McMahon C; Shamsabadi M; Bahou C; Thanasi IA; Rochet LNC; Forte N; Thoreau F; Baker JR; Chudasama V
    Chem Commun (Camb); 2022 Jan; 58(5):645-648. PubMed ID: 34747956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization.
    Yan LZ; Dawson PE
    J Am Chem Soc; 2001 Jan; 123(4):526-33. PubMed ID: 11456564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of water-soluble hypervalent iodine reagents for fluoroalkylation of biological thiols.
    Klimánková I; Hubálek M; Matoušek V; Beier P
    Org Biomol Chem; 2019 Dec; 17(47):10097-10102. PubMed ID: 31754683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New water-soluble phosphines as reductants of peptide and protein disulfide bonds: reactivity and membrane permeability.
    Cline DJ; Redding SE; Brohawn SG; Psathas JN; Schneider JP; Thorpe C
    Biochemistry; 2004 Dec; 43(48):15195-203. PubMed ID: 15568811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycosylation via mixed disulfide formation using glycosylthio-phthalimides and -succinimides as glycosylsulfenyl-transfer reagents.
    Illyés TZ; Szabó T; Szilágyi L
    Carbohydr Res; 2011 Sep; 346(12):1622-7. PubMed ID: 21571258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-throughput hydrophilic interaction liquid chromatography coupled with a charged aerosol detector method to assess trisulfides in IgG1 monoclonal antibodies using tris(2-carboxyethyl)phosphine reaction products: Tris(2-carboxyethyl)phosphine-oxide and tris(2-carboxyethyl)phosphine-sulfide.
    Cornell C; Karanjit A; Chen Y; Jacobson F
    J Chromatogr A; 2016 Jul; 1457():107-15. PubMed ID: 27345209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives.
    Kawulka KE; Sprules T; Diaper CM; Whittal RM; McKay RT; Mercier P; Zuber P; Vederas JC
    Biochemistry; 2004 Mar; 43(12):3385-95. PubMed ID: 15035610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Yan H; Macher BA
    J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly.
    Wang S; Zhou Q; Li Y; Wei B; Liu X; Zhao J; Ye F; Zhou Z; Ding B; Wang P
    J Am Chem Soc; 2022 Jan; 144(3):1232-1242. PubMed ID: 35034454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.