BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38517385)

  • 1. Induced Chirality in Canthaxanthin Aggregates Reveals Multiple Levels of Supramolecular Organization.
    Halat M; Zając G; Andrushchenko V; Bouř P; Baranski R; Pajor K; Baranska M
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402449. PubMed ID: 38517385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of Carotenoid Aggregates in Membranes Studied Selectively using Resonance Raman Optical Activity.
    Hachlica N; Stefańska M; Mach M; Kowalska M; Wydro P; Domagała A; Kessler J; Zając G; Kaczor A
    Small; 2024 Jun; 20(26):e2306707. PubMed ID: 38247201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Amplification in Nature: Studying Cell-Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems.
    Dudek M; Machalska E; Oleszkiewicz T; Grzebelus E; Baranski R; Szcześniak P; Mlynarski J; Zajac G; Kaczor A; Baranska M
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8383-8388. PubMed ID: 30974037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of chirality induced by molecular aggregation and self-assembly.
    Mu X; Wang J; Duan G; Li Z; Wen J; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():188-198. PubMed ID: 30639912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles.
    Mukhopadhyay P; Wipf P; Beratan DN
    Acc Chem Res; 2009 Jun; 42(6):809-19. PubMed ID: 19378940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of Optical Activity in an Oxo-Helicene: Experimental and Computational Studies.
    Demissie TB; Sundar MS; Thangavel K; Andrushchenko V; Bedekar AV; Bouř P
    ACS Omega; 2021 Jan; 6(3):2420-2428. PubMed ID: 33521480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition
    Machalska E; Hachlica N; Zajac G; Carraro D; Baranska M; Licini G; Bouř P; Zonta C; Kaczor A
    Phys Chem Chem Phys; 2021 Oct; 23(40):23336-23340. PubMed ID: 34633399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination.
    Polavarapu PL; Covington CL
    Chirality; 2014 Sep; 26(9):539-52. PubMed ID: 24644231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of the True and False Resonance Raman Optical Activity.
    Machalska E; Zajac G; Wierzba AJ; Kapitán J; Andruniów T; Spiegel M; Gryko D; Bouř P; Baranska M
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21205-21210. PubMed ID: 34216087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality transfer observed in Raman optical activity spectra.
    Machalska E; Zając G; Rode JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121604. PubMed ID: 35835058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity.
    Krupová M; Kessler J; Bouř P
    Chempluschem; 2020 Mar; 85(3):561-575. PubMed ID: 32187832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Spectroscopies in One: Interference of Circular Dichroism and Raman Optical Activity.
    Wu T; Li G; Kapitán J; Kessler J; Xu Y; Bouř P
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):21895-21898. PubMed ID: 32926516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality induction and amplification in supramolecular systems exhibiting vibrational optical activity.
    Kaczor A
    Phys Chem Chem Phys; 2023 Jul; 25(29):19371-19379. PubMed ID: 37434544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides.
    Manchineella S; Prathyusha V; Priyakumar UD; Govindaraju T
    Chemistry; 2013 Dec; 19(49):16615-24. PubMed ID: 24281809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy.
    Brotin T; Daugey N; Vanthuyne N; Jeanneau E; Ducasse L; Buffeteau T
    J Phys Chem B; 2015 Jul; 119(27):8631-9. PubMed ID: 26091242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.
    Jose KV; Raghavachari K
    Chirality; 2016 Dec; 28(12):755-768. PubMed ID: 27897329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular exciton chirality of carotenoid aggregates.
    Simonyi M; Bikádi Z; Zsila F; Deli J
    Chirality; 2003 Oct; 15(8):680-98. PubMed ID: 12923806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies.
    Dudek M; Zajac G; Kaczor A; Baranska M
    J Phys Chem B; 2016 Aug; 120(32):7807-14. PubMed ID: 27438433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-Active Chiroptical Switching in Mono- and Bis-Iron Ethynylcarbo[6]helicenes Studied by Electronic and Vibrational Circular Dichroism and Resonance Raman Optical Activity.
    Shen C; Srebro-Hooper M; Weymuth T; Krausbeck F; Navarrete JTL; Ramírez FJ; Nieto-Ortega B; Casado J; Reiher M; Autschbach J; Crassous J
    Chemistry; 2018 Oct; 24(56):15067-15079. PubMed ID: 30044521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.