These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38517697)

  • 1. Comparative analysis of models in predicting the effects of SNPs on TF-DNA binding using large-scale in vitro and in vivo data.
    Han D; Li Y; Wang L; Liang X; Miao Y; Li W; Wang S; Wang Z
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38517697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants.
    Martin V; Zhao J; Afek A; Mielko Z; Gordân R
    Nucleic Acids Res; 2019 Jul; 47(W1):W127-W135. PubMed ID: 31114870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants.
    Wang M; Tai C; E W; Wei L
    Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel
    Guo Y; Tian K; Zeng H; Guo X; Gifford DK
    Genome Res; 2018 Jun; 28(6):891-900. PubMed ID: 29654070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal cis-Regulatory Elements.
    VandenBosch LS; Luu K; Timms AE; Challam S; Wu Y; Lee AY; Cherry TJ
    Transl Vis Sci Technol; 2022 Apr; 11(4):16. PubMed ID: 35435921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. abc4pwm: affinity based clustering for position weight matrices in applications of DNA sequence analysis.
    Ali O; Farooq A; Yang M; Jin VX; Bjørås M; Wang J
    BMC Bioinformatics; 2022 Mar; 23(1):83. PubMed ID: 35240993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response.
    Xie X; Hanson C; Sinha S
    BMC Biol; 2019 Jul; 17(1):62. PubMed ID: 31362726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling binding specificities of transcription factor pairs with random forests.
    Antikainen AA; Heinonen M; Lähdesmäki H
    BMC Bioinformatics; 2022 Jun; 23(1):212. PubMed ID: 35659235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the impact of single nucleotide variants on transcription factor binding.
    Shi W; Fornes O; Mathelier A; Wasserman WW
    Nucleic Acids Res; 2016 Dec; 44(21):10106-10116. PubMed ID: 27492288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep learning approaches for modeling transcription factor sequence specificity.
    Zhang Y; Mo Q; Xue L; Luo J
    Genomics; 2021 Nov; 113(6):3774-3781. PubMed ID: 34534646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights gained from a comprehensive all-against-all transcription factor binding motif benchmarking study.
    Ambrosini G; Vorontsov I; Penzar D; Groux R; Fornes O; Nikolaeva DD; Ballester B; Grau J; Grosse I; Makeev V; Kulakovskiy I; Bucher P
    Genome Biol; 2020 May; 21(1):114. PubMed ID: 32393327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.