These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38517887)
1. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation. Manoli MT; Gargantilla-Becerra Á; Del Cerro Sánchez C; Rivero-Buceta V; Prieto MA; Nogales J Cell Rep; 2024 Apr; 43(4):113979. PubMed ID: 38517887 [TBL] [Abstract][Full Text] [Related]
2. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Poblete-Castro I; Escapa IF; Jäger C; Puchalka J; Lam CM; Schomburg D; Prieto MA; Martins dos Santos VA Microb Cell Fact; 2012 Mar; 11():34. PubMed ID: 22433058 [TBL] [Abstract][Full Text] [Related]
3. Quantum modeling simulates nutrient effect of bioplastic polyhydroxyalkanoate (PHA) production in Pseudomonas putida. Ho LYL; Pan L; Meng F; Ho KTM; Liu F; Wu MT; Lei HI; Bhachu G; Wang X; Dahlsten O; Sun Y; Lee PH; Tan GYA Sci Rep; 2024 Aug; 14(1):18255. PubMed ID: 39107357 [TBL] [Abstract][Full Text] [Related]
4. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
5. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226 [TBL] [Abstract][Full Text] [Related]
7. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis. Możejko-Ciesielska J; Mostek A Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236 [TBL] [Abstract][Full Text] [Related]
8. Synthetic Control of Metabolic States in Pseudomonas putida by Tuning Polyhydroxyalkanoate Cycle. Manoli MT; Nogales J; Prieto A mBio; 2022 Feb; 13(1):e0179421. PubMed ID: 35038900 [TBL] [Abstract][Full Text] [Related]
9. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Liu H; Chen Y; Zhang Y; Zhao W; Guo H; Wang S; Xia W; Wang S; Liu R; Yang C Int J Biol Macromol; 2022 Jun; 209(Pt A):117-124. PubMed ID: 35395277 [TBL] [Abstract][Full Text] [Related]
10. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions. La Rosa R; de la Peña F; Prieto MA; Rojo F Environ Microbiol; 2014 Jan; 16(1):278-90. PubMed ID: 24118893 [TBL] [Abstract][Full Text] [Related]
11. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. Shahid S; Mosrati R; Ledauphin J; Amiel C; Fontaine P; Gaillard JL; Corroler D J Biosci Bioeng; 2013 Sep; 116(3):302-8. PubMed ID: 23548274 [TBL] [Abstract][Full Text] [Related]
12. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Xu Z; Li X; Hao N; Pan C; de la Torre L; Ahamed A; Miller JH; Ragauskas AJ; Yuan J; Yang B Bioresour Technol; 2019 Feb; 273():538-544. PubMed ID: 30472353 [TBL] [Abstract][Full Text] [Related]
13. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Follonier S; Panke S; Zinn M Microb Cell Fact; 2011 Apr; 10():25. PubMed ID: 21513516 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685 [TBL] [Abstract][Full Text] [Related]
15. Proteomic Response of Możejko-Ciesielska J; Serafim LS Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31795154 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Fu J; Sharma U; Sparling R; Cicek N; Levin DB Can J Microbiol; 2014 Jul; 60(7):461-8. PubMed ID: 24983445 [TBL] [Abstract][Full Text] [Related]
17. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Escapa IF; García JL; Bühler B; Blank LM; Prieto MA Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632 [TBL] [Abstract][Full Text] [Related]
18. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. Poblete-Castro I; Binger D; Oehlert R; Rohde M BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606 [TBL] [Abstract][Full Text] [Related]
19. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Brandenberg OF; Schubert OT; Kruglyak L Microb Cell Fact; 2022 Jun; 21(1):119. PubMed ID: 35717313 [TBL] [Abstract][Full Text] [Related]
20. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]