These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38517887)
21. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372 [TBL] [Abstract][Full Text] [Related]
22. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526 [TBL] [Abstract][Full Text] [Related]
23. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495 [TBL] [Abstract][Full Text] [Related]
24. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Escapa IF; del Cerro C; García JL; Prieto MA Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161 [TBL] [Abstract][Full Text] [Related]
25. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Borrero-de Acuña JM; Bielecka A; Häussler S; Schobert M; Jahn M; Wittmann C; Jahn D; Poblete-Castro I Microb Cell Fact; 2014 Jun; 13():88. PubMed ID: 24948031 [TBL] [Abstract][Full Text] [Related]
26. Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol. Schada von Borzyskowski L; Schulz-Mirbach H; Troncoso Castellanos M; Severi F; Gómez-Coronado PA; Paczia N; Glatter T; Bar-Even A; Lindner SN; Erb TJ Metab Eng; 2023 Mar; 76():97-109. PubMed ID: 36731627 [TBL] [Abstract][Full Text] [Related]
28. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Mezzina MP; Manoli MT; Prieto MA; Nikel PI Biotechnol J; 2021 Mar; 16(3):e2000165. PubMed ID: 33085217 [TBL] [Abstract][Full Text] [Related]
29. Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46. Blunt W; Dartiailh C; Sparling R; Gapes D; Levin DB; Cicek N Appl Microbiol Biotechnol; 2018 Aug; 102(15):6437-6449. PubMed ID: 29799090 [TBL] [Abstract][Full Text] [Related]
30. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Narancic T; Salvador M; Hughes GM; Beagan N; Abdulmutalib U; Kenny ST; Wu H; Saccomanno M; Um J; O'Connor KE; Jiménez JI Microb Biotechnol; 2021 Nov; 14(6):2463-2480. PubMed ID: 33404203 [TBL] [Abstract][Full Text] [Related]
31. Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46. Sharma PK; Fu J; Cicek N; Sparling R; Levin DB Can J Microbiol; 2012 Aug; 58(8):982-9. PubMed ID: 22804681 [TBL] [Abstract][Full Text] [Related]
32. Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Arias S; Bassas-Galia M; Molinari G; Timmis KN Microb Biotechnol; 2013 Sep; 6(5):551-63. PubMed ID: 23445364 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome Changes in Dabrowska D; Mozejko-Ciesielska J; Pokój T; Ciesielski S Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375721 [No Abstract] [Full Text] [Related]
34. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Poblete-Castro I; Binger D; Rodrigues A; Becker J; Martins Dos Santos VA; Wittmann C Metab Eng; 2013 Jan; 15():113-23. PubMed ID: 23164576 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Salvachúa D; Rydzak T; Auwae R; De Capite A; Black BA; Bouvier JT; Cleveland NS; Elmore JR; Huenemann JD; Katahira R; Michener WE; Peterson DJ; Rohrer H; Vardon DR; Beckham GT; Guss AM Microb Biotechnol; 2020 Jan; 13(1):290-298. PubMed ID: 31468725 [TBL] [Abstract][Full Text] [Related]
36. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures. Fontaine P; Mosrati R; Corroler D Int J Biol Macromol; 2017 May; 98():430-435. PubMed ID: 28174083 [TBL] [Abstract][Full Text] [Related]
37. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; Keely CM; Blau W; O'Connor KE Environ Sci Technol; 2008 Oct; 42(20):7696-701. PubMed ID: 18983095 [TBL] [Abstract][Full Text] [Related]
38. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Prieto A; Escapa IF; Martínez V; Dinjaski N; Herencias C; de la Peña F; Tarazona N; Revelles O Environ Microbiol; 2016 Feb; 18(2):341-57. PubMed ID: 25556983 [TBL] [Abstract][Full Text] [Related]
39. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids. Fu J; Sharma P; Spicer V; Krokhin OV; Zhang X; Fristensky B; Cicek N; Sparling R; Levin DB PLoS One; 2015; 10(11):e0142322. PubMed ID: 26544181 [TBL] [Abstract][Full Text] [Related]
40. The Production of Biodegradable Polymers-medium-chain-length Polyhydroxyalkanoates (mcl-PHA) in Pseudomonas putida for Biomedical Engineering Applications. Ene N; Soare Vladu MG; Lupescu I; Ionescu AD; Vamanu E Curr Pharm Biotechnol; 2022; 23(8):1109-1117. PubMed ID: 34375190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]