These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84. Rapeseed meal valorization strategies via nitrogen- and oxygen-limited production of polyhydroxyalkanoates with Pseudomonas putida. Wongsirichot P; Gonzalez-Miquel M; Winterburn J Waste Manag; 2020 Mar; 105():482-491. PubMed ID: 32143144 [TBL] [Abstract][Full Text] [Related]
85. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440. Oliva-Arancibia B; Órdenes-Aenishanslins N; Bruna N; Ibarra PS; Zacconi FC; Pérez-Donoso JM; Poblete-Castro I J Biotechnol; 2017 Dec; 264():29-37. PubMed ID: 29056529 [TBL] [Abstract][Full Text] [Related]
86. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Kourmentza C; Ntaikou I; Lyberatos G; Kornaros M Int J Biol Macromol; 2015 Mar; 74():202-10. PubMed ID: 25542172 [TBL] [Abstract][Full Text] [Related]
87. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. de Eugenio LI; Galán B; Escapa IF; Maestro B; Sanz JM; García JL; Prieto MA Environ Microbiol; 2010 Jun; 12(6):1591-603. PubMed ID: 20406286 [TBL] [Abstract][Full Text] [Related]
88. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Cha D; Ha HS; Lee SK Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015 [TBL] [Abstract][Full Text] [Related]
89. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. Munir S; Jamil N J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110 [TBL] [Abstract][Full Text] [Related]
90. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544 [TBL] [Abstract][Full Text] [Related]
91. Polyhydroxyalkanoate production in Pseudomonas putida from alkanoic acids of varying lengths. Sikkema WD; Cal AJ; Hathwaik UI; Orts WJ; Lee CC PLoS One; 2023; 18(7):e0284377. PubMed ID: 37471433 [TBL] [Abstract][Full Text] [Related]
92. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. Son J; Lim SH; Kim YJ; Lim HJ; Lee JY; Jeong S; Park C; Park SJ Bioresour Technol; 2023 Mar; 371():128607. PubMed ID: 36638894 [TBL] [Abstract][Full Text] [Related]
93. The green revolution of food waste upcycling to produce polyhydroxyalkanoates. Bhatia SK; Patel AK; Yang YH Trends Biotechnol; 2024 Oct; 42(10):1273-1287. PubMed ID: 38582658 [TBL] [Abstract][Full Text] [Related]
94. Transcriptome remodeling of Pseudomonas putida KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress. Mozejko-Ciesielska J; Pokoj T; Ciesielski S J Ind Microbiol Biotechnol; 2018 Jun; 45(6):433-446. PubMed ID: 29736608 [TBL] [Abstract][Full Text] [Related]
95. The influence of nitrogen limitation on mcl-PHA synthesis by two newly isolated strains of Pseudomonas sp. Ciesielski S; Mozejko J; Przybyłek G J Ind Microbiol Biotechnol; 2010 May; 37(5):511-20. PubMed ID: 20204456 [TBL] [Abstract][Full Text] [Related]
96. Metabolic Engineering of Kim D; Lee SK J Microbiol Biotechnol; 2022 Jan; 32(1):110-116. PubMed ID: 34675141 [TBL] [Abstract][Full Text] [Related]
98. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Zhao F; Gong T; Liu X; Fan X; Huang R; Ma T; Wang S; Gao W; Yang C Appl Microbiol Biotechnol; 2019 Feb; 103(4):1713-1724. PubMed ID: 30610286 [TBL] [Abstract][Full Text] [Related]
99. In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Sohn SB; Kim TY; Park JM; Lee SY Biotechnol J; 2010 Jul; 5(7):739-50. PubMed ID: 20540110 [TBL] [Abstract][Full Text] [Related]
100. PHA(MCL) biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. Silva-Queiroz SR; Silva LF; Pradella JG; Pereira EM; Gomez JG J Biotechnol; 2009 Aug; 143(2):111-8. PubMed ID: 19540884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]