BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38518015)

  • 1. The role of GATA family transcriptional factors in haematological malignancies: A review.
    Abunimye DA; Okafor IM; Okorowo H; Obeagu EI
    Medicine (Baltimore); 2024 Mar; 103(12):e37487. PubMed ID: 38518015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GATA family transcriptional factors: emerging suspects in hematologic disorders.
    Gao J; Chen YH; Peterson LC
    Exp Hematol Oncol; 2015; 4():28. PubMed ID: 26445707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the GATA2 transcription factor in normal and malignant hematopoiesis.
    Vicente C; Conchillo A; García-Sánchez MA; Odero MD
    Crit Rev Oncol Hematol; 2012 Apr; 82(1):1-17. PubMed ID: 21605981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GATA-related hematologic disorders.
    Shimizu R; Yamamoto M
    Exp Hematol; 2016 Aug; 44(8):696-705. PubMed ID: 27235756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells.
    Scheenstra MR; Salunkhe V; De Cuyper IM; Hoogenboezem M; Li E; Kuijpers TW; van den Berg TK; Gutiérrez L
    Blood Cells Mol Dis; 2015 Dec; 55(4):293-303. PubMed ID: 26460250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation.
    Moriguchi T; Yamamoto M
    Int J Hematol; 2014 Nov; 100(5):417-24. PubMed ID: 24638828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA factor switching during erythroid differentiation.
    Kaneko H; Shimizu R; Yamamoto M
    Curr Opin Hematol; 2010 May; 17(3):163-8. PubMed ID: 20216212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genetic control of hematopoiesis].
    Roméo PH
    C R Seances Soc Biol Fil; 1997; 191(1):105-11. PubMed ID: 9181132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation.
    Wang C; Hu M; Yu K; Liu W; Hu A; Kuang Y; Huang L; Gajendran B; Zacksenhaus E; Xiao X; Ben-David Y
    Mol Med Rep; 2024 Jun; 29(6):. PubMed ID: 38695236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells.
    Hardison RC; Zhang Y; Keller CA; Xiang G; Heuston EF; An L; Lichtenberg J; Giardine BM; Bodine D; Mahony S; Li Q; Yue F; Weiss MJ; Blobel GA; Taylor J; Hughes J; Higgs DR; Göttgens B
    IUBMB Life; 2020 Jan; 72(1):27-38. PubMed ID: 31769130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GATA Transcription Factors: Basic Principles and Related Human Disorders.
    Fujiwara T
    Tohoku J Exp Med; 2017 Jun; 242(2):83-91. PubMed ID: 28566565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic regulation of Gata factor levels is more important than their identity.
    Ferreira R; Wai A; Shimizu R; Gillemans N; Rottier R; von Lindern M; Ohneda K; Grosveld F; Yamamoto M; Philipsen S
    Blood; 2007 Jun; 109(12):5481-90. PubMed ID: 17327407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression.
    Visvader J; Adams JM
    Blood; 1993 Sep; 82(5):1493-501. PubMed ID: 7689871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of GATA factor expression is distinct between erythroid and mast cell lineages.
    Ohmori S; Takai J; Ishijima Y; Suzuki M; Moriguchi T; Philipsen S; Yamamoto M; Ohneda K
    Mol Cell Biol; 2012 Dec; 32(23):4742-55. PubMed ID: 22988301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1.
    Zhang P; Behre G; Pan J; Iwama A; Wara-Aswapati N; Radomska HS; Auron PE; Tenen DG; Sun Z
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8705-10. PubMed ID: 10411939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies.
    Bresnick EH; Katsumura KR; Lee HY; Johnson KD; Perkins AS
    Nucleic Acids Res; 2012 Jul; 40(13):5819-31. PubMed ID: 22492510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis.
    Creed TM; Baldeosingh R; Eberly CL; Schlee CS; Kim M; Cutler JA; Pandey A; Civin CI; Fossett NG; Kingsbury TJ
    Development; 2020 Jan; 147(1):. PubMed ID: 31806659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation.
    Tsang AP; Visvader JE; Turner CA; Fujiwara Y; Yu C; Weiss MJ; Crossley M; Orkin SH
    Cell; 1997 Jul; 90(1):109-19. PubMed ID: 9230307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells.
    Ajore R; Kumar P; Dhanda RS; Gullberg U; Olsson I
    BMC Mol Biol; 2012 Mar; 13():11. PubMed ID: 22443175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of transcription factors during megakaryocytic differentiation of CD34+ cells from human cord blood induced by thrombopoietin.
    Terui K; Takahashi Y; Kitazawa J; Toki T; Yokoyama M; Ito E
    Tohoku J Exp Med; 2000 Dec; 192(4):259-73. PubMed ID: 11286316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.