BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38518282)

  • 1. Exploring tribology and material contact science in spine surgery: implications for implant design.
    Scariano G; Meade S; Sultan A; Shost M; Benzel EC; Krishnaney A; Mroz T; Steinmetz MP; Habboub G
    J Neurosurg Spine; 2024 Jun; 40(6):801-810. PubMed ID: 38518282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.
    Gittens RA; Olivares-Navarrete R; Schwartz Z; Boyan BD
    Acta Biomater; 2014 Aug; 10(8):3363-71. PubMed ID: 24721613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal implant debris-induced osteolysis.
    Hallab NJ; Cunningham BW; Jacobs JJ
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S125-38. PubMed ID: 14560184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages and Disadvantages of the Use of Various Types of Interbody Implants in Cervical Spine Surgery. Critical Review of the Literature.
    Godlewski B; Dominiak M
    Ortop Traumatol Rehabil; 2020 Aug; 22(4):213-220. PubMed ID: 32986004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification Techniques to Enhance Osseointegration of Spinal Implants.
    Possley D; Baker E; Baker K; Khalil JG
    J Am Acad Orthop Surg; 2020 Nov; 28(22):e988-e994. PubMed ID: 32868701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages.
    Li S; Huan Y; Zhu B; Chen H; Tang M; Yan Y; Wang C; Ouyang Z; Li X; Xue J; Wang W
    J Mater Sci Mater Med; 2021 Dec; 33(1):2. PubMed ID: 34940930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum 5-Year Follow-up on Graduates of Growing Spine Surgery for Early Onset Scoliosis.
    Murphy RF; Barfield WR; Emans JB; Akbarnia B; Thompson G; Sponseller P; Skaggs D; Marks D; Smith JT; Flynn J; Presson A; Sawyer JR; Johnston C;
    J Pediatr Orthop; 2020; 40(10):e942-e946. PubMed ID: 32773654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical biomechanical considerations for spine implant testing.
    Margulies JY; Thampi SP; Bitan FD; Cora DC
    Chir Narzadow Ruchu Ortop Pol; 1999; 64(3):347-64. PubMed ID: 10495560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axially dynamic implants for stabilization of the cervical spine.
    Steinmetz MP; Benzel EC; Apfelbaum RI
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS378-88; discussion ONS388-9. PubMed ID: 17041507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revision surgery of spinal dynamic implants: a literature review and algorithm proposal.
    Cecchinato R; Bourghli A; Obeid I
    Eur Spine J; 2020 Feb; 29(Suppl 1):57-65. PubMed ID: 31916002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results.
    Korovessis P; Papazisis Z; Koureas G; Lambiris E
    Spine (Phila Pa 1976); 2004 Apr; 29(7):735-42. PubMed ID: 15087795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material failure in dynamic spine implants: are the standardized implant tests before market launch sufficient?
    Oikonomidis S; Sobottke R; Wilke HJ; Herren C; Beckmann A; Zarghooni K; Siewe J
    Eur Spine J; 2019 Apr; 28(4):872-882. PubMed ID: 30649613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of cervical spine anterior stabilization systems--Finite element analysis.
    Mackiewicz A; Banach M; Denisiewicz A; Bedzinski R
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():72-9. PubMed ID: 26851563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of bioabsorbable implants in the spine.
    Vaccaro AR; Singh K; Haid R; Kitchel S; Wuisman P; Taylor W; Branch C; Garfin S
    Spine J; 2003; 3(3):227-37. PubMed ID: 14589204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic science of spinal instrumentation.
    Goel VK; Gilbertson LG
    Clin Orthop Relat Res; 1997 Feb; (335):10-31. PubMed ID: 9020203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic stabilization of the spine: a new classification system.
    Kaner T; Sasani M; Oktenoglu T; Ozer AF
    Turk Neurosurg; 2010 Apr; 20(2):205-15. PubMed ID: 20401848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern spinal instrumentation. Part 1: normal spinal implants.
    Davis W; Allouni AK; Mankad K; Prezzi D; Elias T; Rankine J; Davagnanam I
    Clin Radiol; 2013 Jan; 68(1):64-74. PubMed ID: 22658915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative bearing surface options for revision total hip arthroplasty.
    Patel D; Parvizi J; Sharkey PF
    Instr Course Lect; 2011; 60():257-67. PubMed ID: 21553778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration.
    Rao PJ; Pelletier MH; Walsh WR; Mobbs RJ
    Orthop Surg; 2014 May; 6(2):81-9. PubMed ID: 24890288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery.
    Steffen T; Stoll T; Arvinte T; Schenk RK
    Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S132-40. PubMed ID: 11716010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.