These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38518353)

  • 1. Measurement of the Excitation Spectrum of a Dipolar Gas in the Macrodroplet Regime.
    Houwman JJA; Baillie D; Blakie PB; Natale G; Ferlaino F; Mark MJ
    Phys Rev Lett; 2024 Mar; 132(10):103401. PubMed ID: 38518353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Roton Excitation Spectrum of a Stable Dipolar Bose Gas.
    Petter D; Natale G; van Bijnen RMW; Patscheider A; Mark MJ; Chomaz L; Ferlaino F
    Phys Rev Lett; 2019 May; 122(18):183401. PubMed ID: 31144863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic excitation spectrum of a dipolar quantum Bose gas.
    Bismut G; Laburthe-Tolra B; Maréchal E; Pedri P; Gorceix O; Vernac L
    Phys Rev Lett; 2012 Oct; 109(15):155302. PubMed ID: 23102324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence.
    Natale G; van Bijnen RMW; Patscheider A; Petter D; Mark MJ; Chomaz L; Ferlaino F
    Phys Rev Lett; 2019 Aug; 123(5):050402. PubMed ID: 31491290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas.
    Biss H; Sobirey L; Luick N; Bohlen M; Kinnunen JJ; Bruun GM; Lompe T; Moritz H
    Phys Rev Lett; 2022 Mar; 128(10):100401. PubMed ID: 35333076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bragg spectroscopy of a strongly interacting 85Rb Bose-Einstein condensate.
    Papp SB; Pino JM; Wild RJ; Ronen S; Wieman CE; Jin DS; Cornell EA
    Phys Rev Lett; 2008 Sep; 101(13):135301. PubMed ID: 18851457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions.
    Mottl R; Brennecke F; Baumann K; Landig R; Donner T; Esslinger T
    Science; 2012 Jun; 336(6088):1570-3. PubMed ID: 22604724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise determination of the structure factor and contact in a unitary Fermi gas.
    Hoinka S; Lingham M; Fenech K; Hu H; Vale CJ; Drut JE; Gandolfi S
    Phys Rev Lett; 2013 Feb; 110(5):055305. PubMed ID: 23414031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling.
    Ji SC; Zhang L; Xu XT; Wu Z; Deng Y; Chen S; Pan JW
    Phys Rev Lett; 2015 Mar; 114(10):105301. PubMed ID: 25815940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of vortices and vortex stripes in a dipolar condensate.
    Klaus L; Bland T; Poli E; Politi C; Lamporesi G; Casotti E; Bisset RN; Mark MJ; Ferlaino F
    Nat Phys; 2022; 18(12):1453-1458. PubMed ID: 36506337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Superfluid Behavior of a Dipolar Bose-Einstein Condensate.
    Wenzel M; Böttcher F; Schmidt JN; Eisenmann M; Langen T; Pfau T; Ferrier-Barbut I
    Phys Rev Lett; 2018 Jul; 121(3):030401. PubMed ID: 30085779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing universality of Feynman-Tan relation in interacting Bose gases using high-order Bragg spectra.
    Wang Y; Du H; Li Y; Mei F; Hu Y; Xiao L; Ma J; Jia S
    Light Sci Appl; 2023 Feb; 12(1):50. PubMed ID: 36854664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the excitation spectrum of a fermi gas in the BCS-BEC crossover regime.
    Greiner M; Regal CA; Jin DS
    Phys Rev Lett; 2005 Feb; 94(7):070403. PubMed ID: 15783792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective Excitations of Self-Bound Droplets of a Dipolar Quantum Fluid.
    Baillie D; Wilson RM; Blakie PB
    Phys Rev Lett; 2017 Dec; 119(25):255302. PubMed ID: 29303342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Number fluctuations of a dipolar condensate: anisotropy and slow approach to the thermodynamic regime.
    Baillie D; Bisset RN; Ticknor C; Blakie PB
    Phys Rev Lett; 2014 Dec; 113(26):265301. PubMed ID: 25615347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of Roton Mode Population in a Dipolar Quantum Gas.
    Chomaz L; van Bijnen RMW; Petter D; Faraoni G; Baier S; Becher JH; Mark MJ; Wächtler F; Santos L; Ferlaino F
    Nat Phys; 2018 May; 14(5):442-446. PubMed ID: 29861780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum enhancement of higher-order phononlike excitations of a Bose-Einstein condensate.
    Rowen EE; Bar-Gill N; Davidson N
    Phys Rev Lett; 2008 Jul; 101(1):010404. PubMed ID: 18764094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.
    Kovalev VM; Tse WK
    J Phys Condens Matter; 2017 Nov; 29(46):465301. PubMed ID: 28862151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum rotor model for a Bose-Einstein condensate of dipolar molecules.
    Armaitis J; Duine RA; Stoof HT
    Phys Rev Lett; 2013 Nov; 111(21):215301. PubMed ID: 24313496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of damping and frequency shifts of the scissors mode of a trapped Bose-Einstein condensate.
    Maragò O; Hechenblaikner G; Hodby E; Foot C
    Phys Rev Lett; 2001 Apr; 86(18):3938-41. PubMed ID: 11328065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.