These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38518365)

  • 1. Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays.
    McNamara IN; Wellman SM; Li L; Eles JR; Savya S; Sohal HS; Angle MR; Kozai TDY
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38518365
    [No Abstract]   [Full Text] [Related]  

  • 2. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain.
    Joo HR; Fan JL; Chen S; Pebbles JA; Liang H; Chung JE; Yorita AM; Tooker AC; Tolosa VM; Geaghan-Breiner C; Roumis DK; Liu DF; Haque R; Frank LM
    J Neural Eng; 2019 Oct; 16(6):066021. PubMed ID: 31216526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants.
    Bennett C; Samikkannu M; Mohammed F; Dietrich WD; Rajguru SM; Prasad A
    Biomaterials; 2018 May; 164():1-10. PubMed ID: 29477707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.
    Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA
    Biomaterials; 2015; 53():753-62. PubMed ID: 25890770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model.
    Boergens KM; Tadić A; Hopper MS; McNamara I; Fell D; Sahasrabuddhe K; Kong Y; Straka M; Sohal HS; Angle MR
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038875
    [No Abstract]   [Full Text] [Related]  

  • 8. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagenase-aided insertion of intracortical microelectrode arrays: evaluation of insertion force and chronic recording performance.
    Paralikar KJ; Lawrence JK; Clement RS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2958-61. PubMed ID: 17946994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
    Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA
    J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime.
    Dryg ID; Ward MP; Qing KY; Mei H; Schaffer JE; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):562-71. PubMed ID: 25706720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants.
    Dugan EA; Bennett C; Tamames I; Dietrich WD; King CS; Prasad A; Rajguru SM
    J Neural Eng; 2020 Apr; 17(2):026035. PubMed ID: 32240985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slim electrodes for improved targeting in deep brain stimulation.
    Villalobos J; McDermott HJ; McNeill P; Golod A; Rathi V; Bauquier SH; Fallon JB
    J Neural Eng; 2020 Mar; 17(2):026008. PubMed ID: 32101807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.