These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 38518758)
1. Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning. Hu Y; Lui A; Goldstein M; Sudarshan M; Tinsay A; Tsui C; Maidman SD; Medamana J; Jethani N; Puli A; Nguy V; Aphinyanaphongs Y; Kiefer N; Smilowitz NR; Horowitz J; Ahuja T; Fishman GI; Hochman J; Katz S; Bernard S; Ranganath R Eur Heart J Acute Cardiovasc Care; 2024 Jun; 13(6):472-480. PubMed ID: 38518758 [TBL] [Abstract][Full Text] [Related]
2. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147 [TBL] [Abstract][Full Text] [Related]
3. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
4. Cardiogenic shock developing in the coronary care unit in patients with ST-elevation myocardial infarction. De Luca G; Savonitto S; Greco C; Parodi G; Dajelli Ermolli NC; Silva C; Lucci D; Gonzini L; Maggioni AP; Cuccia C; J Cardiovasc Med (Hagerstown); 2008 Oct; 9(10):1023-9. PubMed ID: 18799965 [TBL] [Abstract][Full Text] [Related]
5. Optimized Risk Score to Predict Mortality in Patients With Cardiogenic Shock in the Cardiac Intensive Care Unit. Yamga E; Mantena S; Rosen D; Bucholz EM; Yeh RW; Celi LA; Ustun B; Butala NM J Am Heart Assoc; 2023 Jul; 12(13):e029232. PubMed ID: 37345819 [TBL] [Abstract][Full Text] [Related]
7. Cardiac power index, mean arterial pressure, and Simplified Acute Physiology Score II are strong predictors of survival and response to revascularization in cardiogenic shock. Popovic B; Fay R; Cravoisy-Popovic A; Levy B Shock; 2014 Jul; 42(1):22-6. PubMed ID: 24827392 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of an Explainable Deep Learning Model to Predict In-Hospital Mortality for Patients With Acute Myocardial Infarction: Algorithm Development and Validation Study. Xie P; Wang H; Xiao J; Xu F; Liu J; Chen Z; Zhao W; Hou S; Wu D; Ma Y; Xiao J J Med Internet Res; 2024 May; 26():e49848. PubMed ID: 38728685 [TBL] [Abstract][Full Text] [Related]
9. Complicated acute myocardial infarction requiring mechanical ventilation in the intensive care unit: prognostic factors of clinical outcome in a series of 157 patients. Lesage A; Ramakers M; Daubin C; Verrier V; Beynier D; Charbonneau P; du Cheyron D Crit Care Med; 2004 Jan; 32(1):100-5. PubMed ID: 14707566 [TBL] [Abstract][Full Text] [Related]
10. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
11. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
12. Intra-Aortic Balloon Counterpulsation in Patients With Chronic Heart Failure and Cardiogenic Shock: Clinical Response and Predictors of Stabilization. Sintek MA; Gdowski M; Lindman BR; Nassif M; Lavine KJ; Novak E; Bach RG; Silvestry SC; Mann DL; Joseph SM J Card Fail; 2015 Nov; 21(11):868-76. PubMed ID: 26164215 [TBL] [Abstract][Full Text] [Related]
14. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
15. Cardiogenic Shock Prior to Percutaneous Coronary Intervention in ST-Elevation Myocardial Infarction: Outcomes and Predictors of Mortality (ANZACS-QI 73). Lee KH; Harrison W; Chow KL; Lee M; Kerr AJ Heart Lung Circ; 2024 Apr; 33(4):450-459. PubMed ID: 38453606 [TBL] [Abstract][Full Text] [Related]
16. Blood lactate is a predictor of short-term mortality in patients with myocardial infarction complicated by heart failure but without cardiogenic shock. Gjesdal G; Braun OÖ; Smith JG; Scherstén F; Tydén P BMC Cardiovasc Disord; 2018 Jan; 18(1):8. PubMed ID: 29347907 [TBL] [Abstract][Full Text] [Related]
17. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
18. Serial Assessment of Shock Severity in Cardiac Intensive Care Unit Patients. Jentzer JC; Van Diepen S; Patel PC; Henry TD; Morrow DA; Baran DA; Kashani KB J Am Heart Assoc; 2023 Dec; 12(23):e032748. PubMed ID: 37930059 [TBL] [Abstract][Full Text] [Related]
19. Shock Index as a predictor for In-hospital mortality in patients with non-ST-segment elevation myocardial infarction. Kobayashi A; Misumida N; Luger D; Kanei Y Cardiovasc Revasc Med; 2016 Jun; 17(4):225-8. PubMed ID: 26973283 [TBL] [Abstract][Full Text] [Related]