These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38518780)

  • 1. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin.
    Niedzialkowska E; Runyan LA; Kudryashova E; Egelman EH; Kudryashov DS
    Structure; 2024 Jun; 32(6):725-738.e8. PubMed ID: 38518780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of F-actin by
    Niedzialkowska E; Runyan LA; Kudryashova E; Egelman EH; Kudryashov DS
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of actin turnover by a salmonella invasion protein.
    McGhie EJ; Hayward RD; Koronakis V
    Mol Cell; 2004 Feb; 13(4):497-510. PubMed ID: 14992720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin.
    Galkin VE; Orlova A; VanLoock MS; Zhou D; Galán JE; Egelman EH
    Nat Struct Biol; 2002 Jul; 9(7):518-21. PubMed ID: 12055622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin.
    Muhlrad A; Ringel I; Pavlov D; Peyser YM; Reisler E
    Biophys J; 2006 Dec; 91(12):4490-9. PubMed ID: 16997870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms.
    Lilic M; Galkin VE; Orlova A; VanLoock MS; Egelman EH; Stebbins CE
    Science; 2003 Sep; 301(5641):1918-21. PubMed ID: 14512630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin lessons from pathogens.
    Le Clainche C; Drubin DG
    Mol Cell; 2004 Feb; 13(4):453-4. PubMed ID: 14992714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for subversion of host cell actin cytoskeleton during
    Yuan B; Scholz J; Wald J; Thuenauer R; Hennell James R; Ellenberg I; Windhorst S; Faix J; Marlovits TC
    Sci Adv; 2023 Dec; 9(49):eadj5777. PubMed ID: 38064550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization.
    Zhou D; Mooseker MS; Galán JE
    Science; 1999 Mar; 283(5410):2092-5. PubMed ID: 10092234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-EM structure of the bacterial effector protein SipA bound to F-actin reveals a unique mechanism for filament stabilization.
    Guo E; Chou SZ; Lara-Tejero M; Galan JE
    bioRxiv; 2024 Mar; ():. PubMed ID: 38187563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical characterization of SipA, an actin-binding protein from Salmonella enterica.
    Mitra K; Zhou D; Galán JE
    FEBS Lett; 2000 Sep; 482(1-2):81-4. PubMed ID: 11018527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin.
    Das S; Ge P; Oztug Durer ZA; Grintsevich EE; Zhou ZH; Reisler E
    Structure; 2020 May; 28(5):586-593.e3. PubMed ID: 32348747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin.
    McGhie EJ; Hayward RD; Koronakis V
    EMBO J; 2001 May; 20(9):2131-9. PubMed ID: 11331579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic phosphate regulates the binding of cofilin to actin filaments.
    Muhlrad A; Pavlov D; Peyser YM; Reisler E
    FEBS J; 2006 Apr; 273(7):1488-96. PubMed ID: 16689934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Effects and Functional Implications of Phalloidin and Jasplakinolide Binding to Actin Filaments.
    Pospich S; Merino F; Raunser S
    Structure; 2020 Apr; 28(4):437-449.e5. PubMed ID: 32084355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-terminal tail of UNC-60B (actin depolymerizing factor/cofilin) is critical for maintaining its stable association with F-actin and is implicated in the second actin-binding site.
    Ono S; McGough A; Pope BJ; Tolbert VT; Bui A; Pohl J; Benian GM; Gernert KM; Weeds AG
    J Biol Chem; 2001 Feb; 276(8):5952-8. PubMed ID: 11050090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM.
    Merino F; Pospich S; Funk J; Wagner T; Küllmer F; Arndt HD; Bieling P; Raunser S
    Nat Struct Mol Biol; 2018 Jun; 25(6):528-537. PubMed ID: 29867215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropomyosin and ADF/cofilin as collaborators and competitors.
    Kuhn TB; Bamburg JR
    Adv Exp Med Biol; 2008; 644():232-49. PubMed ID: 19209826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative.
    Steinmetz MO; Stoffler D; Müller SA; Jahn W; Wolpensinger B; Goldie KN; Engel A; Faulstich H; Aebi U
    J Mol Biol; 1998 Feb; 276(1):1-6. PubMed ID: 9514733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover.
    Pope BJ; Gonsior SM; Yeoh S; McGough A; Weeds AG
    J Mol Biol; 2000 May; 298(4):649-61. PubMed ID: 10788327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.