These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38518922)
21. Effects of biological clogging on 1,1,1-TCA and its intermediates distribution and fate in heterogeneous saturated bio-augmented permeable reactive barriers. Wang W; Wu Y Environ Sci Pollut Res Int; 2018 Oct; 25(28):28628-28641. PubMed ID: 30094670 [TBL] [Abstract][Full Text] [Related]
22. Investigation of aqueous Fe(III) and Mn(II) removal using dolomite as a permeable reactive barrier material. Liang-Tong Z; Li Z; Yuqing Y; Na H; Bate B Environ Technol; 2023 Jun; 44(14):2039-2053. PubMed ID: 34919016 [TBL] [Abstract][Full Text] [Related]
23. Hydraulic properties of bentonite buffer material beyond 100 °C. Yoon S; Jeon JS; Lee GJ Heliyon; 2023 Aug; 9(8):e18447. PubMed ID: 37576299 [TBL] [Abstract][Full Text] [Related]
24. Using a pedotransfer (PTF) model to establish GIS-based maps for the main physical and hydraulic soil properties in the eastern region of the Al-Ahsa Oasis, Saudi Arabia. Al-Saeedi AH PLoS One; 2022; 17(10):e0276259. PubMed ID: 36264960 [TBL] [Abstract][Full Text] [Related]
25. Influences of pH on transport of arsenate (As Chotpantarat S; Amasvata C Sci Rep; 2020 Feb; 10(1):3512. PubMed ID: 32103033 [TBL] [Abstract][Full Text] [Related]
26. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Bodner G; Scholl P; Loiskandl W; Kaul HP Geoderma; 2013 Aug; 204-205(100):120-129. PubMed ID: 24748683 [TBL] [Abstract][Full Text] [Related]
27. Removal of manganese from aqueous solution by a permeable reactive barrier loaded with hydroxyapatite-coated quartz sand. Lu Q; Zhang W; Xiong X; Guo Y; Huang D; Liu H Environ Sci Pollut Res Int; 2023 Feb; 30(7):19393-19409. PubMed ID: 36239896 [TBL] [Abstract][Full Text] [Related]
28. Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration. Li S; Huang G; Kong X; Yang Y; Liu F; Hou G; Chen H Water Sci Technol; 2014; 70(9):1540-7. PubMed ID: 25401319 [TBL] [Abstract][Full Text] [Related]
29. Evaluating low-cost permeable adsorptive barriers for the removal of benzene from groundwater: Laboratory experiments and numerical modelling. Obiri-Nyarko F; Kwiatkowska-Malina J; Kumahor SK; Malina G J Contam Hydrol; 2022 Oct; 250():104054. PubMed ID: 35952492 [TBL] [Abstract][Full Text] [Related]
30. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Obiri-Nyarko F; Grajales-Mesa SJ; Malina G Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925 [TBL] [Abstract][Full Text] [Related]
31. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Callegari A; Ferronato N; Rada EC; Capodaglio AG; Torretta V Environ Sci Pollut Res Int; 2018 Sep; 25(26):26135-26143. PubMed ID: 29971744 [TBL] [Abstract][Full Text] [Related]
32. A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica. Statham TM; Stark SC; Snape I; Stevens GW; Mumford KA Chemosphere; 2016 Mar; 147():368-75. PubMed ID: 26774301 [TBL] [Abstract][Full Text] [Related]
33. Iron-ozone catalytic oxidation reactive filtration of municipal wastewater at field pilot and full-scale with high-efficiency pollutant removal and potential negative CO Baker MC; McCarthy D; Taslakyan L; Henchion G; Mannion R; Strawn DG; Möller G Water Environ Res; 2023 May; 95(5):e10876. PubMed ID: 37142261 [TBL] [Abstract][Full Text] [Related]
34. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents. Mak MS; Lo IM Environ Sci Technol; 2011 Dec; 45(23):10148-54. PubMed ID: 22035382 [TBL] [Abstract][Full Text] [Related]
35. Mixed versus layered multi-media filter for simultaneous removal of nutrients and heavy metals from urban stormwater runoff. Reddy KR; Dastgheibi S; Cameselle C Environ Sci Pollut Res Int; 2021 Feb; 28(6):7574-7585. PubMed ID: 33034857 [TBL] [Abstract][Full Text] [Related]
36. [Removal of arsenic from dispersed drinking water by iron oxide-coated sand]. Yuan T; Luo Q Huan Jing Ke Xue; 2001 May; 22(3):25-9. PubMed ID: 11507901 [TBL] [Abstract][Full Text] [Related]
37. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water. Wang J; Zhang P; Yang L; Huang T J Contam Hydrol; 2016; 185-186():42-50. PubMed ID: 26826541 [TBL] [Abstract][Full Text] [Related]
38. Remediation of MSW landfill leachate by permeable reactive barrier with vegetation. Chiemchaisri C; Chiemchaisri W; Witthayapirom C Water Sci Technol; 2015; 71(9):1389-97. PubMed ID: 25945857 [TBL] [Abstract][Full Text] [Related]
39. Suction characteristics of compacted zeolite-bentonite and sand-bentonite mixtures. Durukan S; Pulat HF; Yukselen-Aksoy Y Waste Manag Res; 2014 Feb; 32(2):149-56. PubMed ID: 24519229 [TBL] [Abstract][Full Text] [Related]
40. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration. Mak MS; Lo IM; Liu T Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]