BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38519030)

  • 1. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy.
    Schroeder L; Diepold N; Gäfe S; Niemann HH; Kottke T
    J Biol Chem; 2024 Apr; 300(4):107210. PubMed ID: 38519030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled.
    Moritzer AC; Niemann HH
    Protein Sci; 2019 Dec; 28(12):2112-2118. PubMed ID: 31589794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of apo flavin-dependent halogenase Xcc4156 hints at a reason for cofactor-soaking difficulties.
    Widmann C; Ismail M; Sewald N; Niemann HH
    Acta Crystallogr D Struct Biol; 2020 Jul; 76(Pt 7):687-697. PubMed ID: 32627741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants.
    Lee J; Kim J; Kim H; Kim EJ; Jeong HJ; Choi KY; Kim BG
    Chembiochem; 2020 May; 21(10):1446-1452. PubMed ID: 31916339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
    Neubauer PR; Widmann C; Wibberg D; Schröder L; Frese M; Kottke T; Kalinowski J; Niemann HH; Sewald N
    PLoS One; 2018; 13(5):e0196797. PubMed ID: 29746521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF.
    Gäfe S; Niemann HH
    Acta Crystallogr D Struct Biol; 2023 Jul; 79(Pt 7):596-609. PubMed ID: 37314407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination.
    Dong C; Flecks S; Unversucht S; Haupt C; van Pée KH; Naismith JH
    Science; 2005 Sep; 309(5744):2216-9. PubMed ID: 16195462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures, mechanisms and applications of flavin-dependent halogenases.
    Phintha A; Prakinee K; Chaiyen P
    Enzymes; 2020; 47():327-364. PubMed ID: 32951827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual substrate and halide versatility of phenolic halogenase PltM.
    Mori S; Pang AH; Thamban Chandrika N; Garneau-Tsodikova S; Tsodikov OV
    Nat Commun; 2019 Mar; 10(1):1255. PubMed ID: 30890712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insights from Molecular Dynamics Simulations of Tryptophan 7-Halogenase and Tryptophan 5-Halogenase.
    Ainsley J; Mulholland AJ; Black GW; Sparagano O; Christov CZ; Karabencheva-Christova TG
    ACS Omega; 2018 May; 3(5):4847-4859. PubMed ID: 31458701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.