These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 38519127)

  • 1. Repetition Suppression Reveals Cue-Specific Spatial Representations for Landmarks and Self-Motion Cues in the Human Retrosplenial Cortex.
    Chen X; Wei Z; Wolbers T
    eNeuro; 2024 Apr; 11(4):. PubMed ID: 38519127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans.
    Chen X; Vieweg P; Wolbers T
    Neuroimage; 2019 Nov; 202():116074. PubMed ID: 31386919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.
    van Wijngaarden JB; Babl SS; Ito HT
    Elife; 2020 Nov; 9():. PubMed ID: 33138915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex.
    Moon HJ; Gauthier B; Park HD; Faivre N; Blanke O
    Commun Biol; 2022 May; 5(1):406. PubMed ID: 35501331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex.
    Campbell MG; Attinger A; Ocko SA; Ganguli S; Giocomo LM
    Cell Rep; 2021 Sep; 36(10):109669. PubMed ID: 34496249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
    Shine JP; Valdés-Herrera JP; Hegarty M; Wolbers T
    J Neurosci; 2016 Jun; 36(24):6371-81. PubMed ID: 27307227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex.
    Bicanski A; Burgess N
    J Neurosci; 2016 Nov; 36(46):11601-11618. PubMed ID: 27852770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation.
    Sun H; Cai R; Li R; Li M; Gao L; Li X
    J Physiol; 2024 Oct; 602(19):5017-5038. PubMed ID: 39216077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality.
    Kinkhabwala AA; Gu Y; Aronov D; Tank DW
    Elife; 2020 Mar; 9():. PubMed ID: 32149601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of path integration and representation of spatial context in the retrosplenial cortex.
    Ju M; Gaussier P
    Biol Cybern; 2020 Apr; 114(2):303-313. PubMed ID: 32306125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-reported navigation ability is associated with optic flow-sensitive regions' functional connectivity patterns during visual path integration.
    Zajac L; Burte H; Taylor HA; Killiany R
    Brain Behav; 2019 Apr; 9(4):e01236. PubMed ID: 30884216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Which way and how far? Tracking of translation and rotation information for human path integration.
    Chrastil ER; Sherrill KR; Hasselmo ME; Stern CE
    Hum Brain Mapp; 2016 Oct; 37(10):3636-55. PubMed ID: 27238897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective neural coding of object, feature, and geometry spatial cues in humans.
    Ramanoël S; Durteste M; Bizeul A; Ozier-Lafontaine A; Bécu M; Sahel JA; Habas C; Arleo A
    Hum Brain Mapp; 2022 Dec; 43(17):5281-5295. PubMed ID: 35776524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
    Sherrill KR; Erdem UM; Ross RS; Brown TI; Hasselmo ME; Stern CE
    J Neurosci; 2013 Dec; 33(49):19304-13. PubMed ID: 24305826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.
    Vedder LC; Miller AMP; Harrison MB; Smith DM
    Cereb Cortex; 2017 Jul; 27(7):3713-3723. PubMed ID: 27473323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Representation of Landmark and Self-Motion Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks during Septal Inactivation.
    Fattahi M; Sharif F; Geiller T; Royer S
    J Neurosci; 2018 Jul; 38(30):6766-6778. PubMed ID: 29954846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits.
    Stangl M; Achtzehn J; Huber K; Dietrich C; Tempelmann C; Wolbers T
    Curr Biol; 2018 Apr; 28(7):1108-1115.e6. PubMed ID: 29551413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attractor-like Dynamics in the Subicular Complex.
    Sharma A; Nair IR; Yoganarasimha D
    J Neurosci; 2022 Oct; 42(40):7594-7614. PubMed ID: 36028315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.