These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38519454)

  • 1. Molecular basis promoting centriole triplet microtubule assembly.
    Takeda Y; Chinen T; Honda S; Takatori S; Okuda S; Yamamoto S; Fukuyama M; Takeuchi K; Tomita T; Hata S; Kitagawa D
    Nat Commun; 2024 Mar; 15(1):2216. PubMed ID: 38519454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.
    Wang JT; Kong D; Hoerner CR; Loncarek J; Stearns T
    Elife; 2017 Sep; 6():. PubMed ID: 28906251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying Centriole Duplication and Elongation in Human Cells.
    Peneda C; Lopes CAM; Bettencourt-Dias M
    Methods Mol Biol; 2020; 2101():147-162. PubMed ID: 31879903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of CAP350 in centriolar tubule stability and centriole assembly.
    Le Clech M
    PLoS One; 2008; 3(12):e3855. PubMed ID: 19052644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas.
    Piasecki BP; Silflow CD
    Mol Biol Cell; 2009 Jan; 20(1):368-78. PubMed ID: 19005206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion.
    Atorino ES; Hata S; Funaya C; Neuner A; Schiebel E
    Nat Commun; 2020 Feb; 11(1):903. PubMed ID: 32060285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and Regulation of Centriole and Cilium Biogenesis.
    Breslow DK; Holland AJ
    Annu Rev Biochem; 2019 Jun; 88():691-724. PubMed ID: 30601682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of γ-tubulin in centrosomal microtubule organization.
    O'Toole E; Greenan G; Lange KI; Srayko M; Müller-Reichert T
    PLoS One; 2012; 7(1):e29795. PubMed ID: 22253783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Short CEP135 Splice Isoform Controls Centriole Duplication.
    Dahl KD; Sankaran DG; Bayless BA; Pinter ME; Galati DF; Heasley LR; Giddings TH; Pearson CG
    Curr Biol; 2015 Oct; 25(19):2591-6. PubMed ID: 26412126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary conservation of centriole rotational asymmetry in the human centrosome.
    Gaudin N; Martin Gil P; Boumendjel M; Ershov D; Pioche-Durieu C; Bouix M; Delobelle Q; Maniscalco L; Phan TBN; Heyer V; Reina-San-Martin B; Azimzadeh J
    Elife; 2022 Mar; 11():. PubMed ID: 35319462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconstructing the centriole: structure and number control.
    Brito DA; Gouveia SM; Bettencourt-Dias M
    Curr Opin Cell Biol; 2012 Feb; 24(1):4-13. PubMed ID: 22321829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding centriole elimination.
    Kalbfuss N; Gönczy P
    Open Biol; 2023 Nov; 13(11):230222. PubMed ID: 37963546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENKD1 is a centrosomal and ciliary microtubule-associated protein important for primary cilium content regulation.
    Tiryaki F; Deretic J; Firat-Karalar EN
    FEBS J; 2022 Jul; 289(13):3789-3812. PubMed ID: 35072334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hVFL3/CCDC61 is a component of mother centriole subdistal appendages required for centrosome cohesion and positioning.
    Pizon V; Gaudin N; Poteau M; Cifuentes-Diaz C; Demdou R; Heyer V; Reina San Martin B; Azimzadeh J
    Biol Cell; 2020 Jan; 112(1):22-37. PubMed ID: 31789463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal Postulates of Centrosomal Biology. Version 2020.
    Uzbekov RE; Avidor-Reiss T
    Cells; 2020 Sep; 9(10):. PubMed ID: 32987651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Procentriole assembly revealed by cryo-electron tomography.
    Guichard P; Chrétien D; Marco S; Tassin AM
    EMBO J; 2010 May; 29(9):1565-72. PubMed ID: 20339347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation.
    Dammermann A; Pemble H; Mitchell BJ; McLeod I; Yates JR; Kintner C; Desai AB; Oegema K
    Genes Dev; 2009 Sep; 23(17):2046-59. PubMed ID: 19656802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles.
    Gomes Pereira S; Sousa AL; Nabais C; Paixão T; Holmes AJ; Schorb M; Goshima G; Tranfield EM; Becker JD; Bettencourt-Dias M
    Curr Biol; 2021 Oct; 31(19):4340-4353.e7. PubMed ID: 34433076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold.
    Schweizer N; Haren L; Dutto I; Viais R; Lacasa C; Merdes A; Lüders J
    Nat Commun; 2021 Oct; 12(1):6042. PubMed ID: 34654813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length.
    Zheng X; Ramani A; Soni K; Gottardo M; Zheng S; Ming Gooi L; Li W; Feng S; Mariappan A; Wason A; Widlund P; Pozniakovsky A; Poser I; Deng H; Ou G; Riparbelli M; Giuliano C; Hyman AA; Sattler M; Gopalakrishnan J; Li H
    Nat Commun; 2016 Jun; 7():11874. PubMed ID: 27306797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.