These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38519651)

  • 1. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple.
    Ianiri G; Barone G; Palmieri D; Quiquero M; Gaeta I; De Curtis F; Castoria R
    Commun Biol; 2024 Mar; 7(1):359. PubMed ID: 38519651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity.
    Castoria R; Miccoli C; Barone G; Palmieri D; De Curtis F; Lima G; Heitman J; Ianiri G
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.
    Buron-Moles G; Wisniewski M; Viñas I; Teixidó N; Usall J; Droby S; Torres R
    J Proteomics; 2015 Jan; 114():136-51. PubMed ID: 25464364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptomic Analysis of the Interaction between
    Wang K; Zheng X; Zhang X; Zhao L; Yang Q; Boateng NAS; Ahima J; Liu J; Zhang H
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31661784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of extracellular
    Palmieri D; Miccoli C; Notardonato I; Avino P; Lima G; De Curtis F; Ianiri G; Castoria R
    Front Microbiol; 2022; 13():973670. PubMed ID: 35979494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum.
    Chen D; Li G; Liu J; Wisniewski M; Droby S; Levin E; Huang S; Liu Y
    Mol Genet Genomics; 2020 Nov; 295(6):1415-1429. PubMed ID: 32656702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum.
    Barad S; Sela N; Kumar D; Kumar-Dubey A; Glam-Matana N; Sherman A; Prusky D
    BMC Genomics; 2016 May; 17():330. PubMed ID: 27146851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteome of Penicillium expansum during infection of postharvest apple is revealed using Label-Free and Parallel Reaction Monitoring(PRM)Techniques.
    Wang K; Wang H; Xu M; Ngea GLN; Zhang H
    J Proteomics; 2024 Apr; 298():105142. PubMed ID: 38428586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit.
    Vilanova L; Vall-Llaura N; Torres R; Usall J; Teixidó N; Larrigaudière C; Giné-Bordonaba J
    Plant Physiol Biochem; 2017 Nov; 120():132-143. PubMed ID: 29028545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Isolated
    Settier-Ramírez L; López-Carballo G; Hernández-Muñoz P; Fontana A; Strub C; Schorr-Galindo S
    Toxins (Basel); 2021 Jun; 13(6):. PubMed ID: 34199507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit.
    Luciano-Rosario D; Keller NP; Jurick WM
    Mol Plant Pathol; 2020 Nov; 21(11):1391-1404. PubMed ID: 32969130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Response of Resistant (PI613981-
    Ballester AR; Norelli J; Burchard E; Abdelfattah A; Levin E; González-Candelas L; Droby S; Wisniewski M
    Front Plant Sci; 2017; 8():1981. PubMed ID: 29201037
    [No Abstract]   [Full Text] [Related]  

  • 13. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits.
    Tolaini V; Zjalic S; Reverberi M; Fanelli C; Fabbri AA; Del Fiore A; De Rossi P; Ricelli A
    Int J Food Microbiol; 2010 Apr; 138(3):243-9. PubMed ID: 20206395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural observation and transcriptome analysis provide insights into mechanisms of Penicillium expansum invading apple wounds.
    Wang Y; Yang Q; Godana EA; Zhang Y; Zhang H
    Food Chem; 2023 Jul; 414():135633. PubMed ID: 36809724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii.
    Yu T; Chen J; Lu H; Zheng X
    Phytopathology; 2009 Mar; 99(3):258-64. PubMed ID: 19203278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.
    Zhang H; Chen L; Sun Y; Zhao L; Zheng X; Yang Q; Zhang X
    Mol Plant Microbe Interact; 2017 Apr; 30(4):301-311. PubMed ID: 28398122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple.
    Li HX; Xiao CL
    Phytopathology; 2008 Apr; 98(4):427-35. PubMed ID: 18944191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis.
    Lai T; Chen Y; Li B; Qin G; Tian S
    J Proteomics; 2014 May; 103():47-56. PubMed ID: 24675182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases.
    Agirman B; Erten H
    Yeast; 2020 Sep; 37(9-10):437-448. PubMed ID: 32452099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.
    Banani H; Spadaro D; Zhang D; Matic S; Garibaldi A; Gullino ML
    Int J Food Microbiol; 2014 Jul; 182-183():1-8. PubMed ID: 24854386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.