These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38520348)

  • 1. Charge Trapping in Semiconductor Photocatalysts: A Time- and Space-Domain Perspective.
    Xue J; Fujitsuka M; Tachikawa T; Bao J; Majima T
    J Am Chem Soc; 2024 Apr; 146(13):8787-8799. PubMed ID: 38520348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Defect-Induced Effects on Nanoscale Charge Separation in Semiconductor Photocatalysts.
    Chen R; Pang S; An H; Dittrich T; Fan F; Li C
    Nano Lett; 2019 Jan; 19(1):426-432. PubMed ID: 30585727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy.
    Chen R; Fan F; Dittrich T; Li C
    Chem Soc Rev; 2018 Nov; 47(22):8238-8262. PubMed ID: 30059114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Charge-Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques.
    Chen R; Fan F; Li C
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202117567. PubMed ID: 35100475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced space- and time-resolved techniques for photocatalyst studies.
    Gao Y; Nie W; Wang X; Fan F; Li C
    Chem Commun (Camb); 2020 Jan; 56(7):1007-1021. PubMed ID: 31898694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing interfacial charge transfer in heterojunctions for photocatalysis.
    Li M; Gong Y; Wang Y; He T
    Phys Chem Chem Phys; 2022 Aug; 24(33):19659-19672. PubMed ID: 35968928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoting Photocatalytic H
    Yao Q; Li H; Xue J; Jiang S; Zhang Q; Bao J
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202308140. PubMed ID: 37395373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
    Gessner O; Gühr M
    Acc Chem Res; 2016 Jan; 49(1):138-45. PubMed ID: 26641490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts.
    Chen F; Ma T; Zhang T; Zhang Y; Huang H
    Adv Mater; 2021 Mar; 33(10):e2005256. PubMed ID: 33501728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles.
    Chen R; Ni C; Zhu J; Fan F; Li C
    Nat Protoc; 2024 Apr; ():. PubMed ID: 38654135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Femtosecond Laser Spectroscopy to the Development of Advanced Optoelectronic Nanomaterials.
    Chuang CH; Burda C
    J Phys Chem Lett; 2012 Jul; 3(14):1921-7. PubMed ID: 26292014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies.
    Ma J; Miao TJ; Tang J
    Chem Soc Rev; 2022 Jul; 51(14):5777-5794. PubMed ID: 35770623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts.
    Tao X; Zhao Y; Wang S; Li C; Li R
    Chem Soc Rev; 2022 May; 51(9):3561-3608. PubMed ID: 35403632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of 2D S-Scheme Heterojunction Photocatalyst.
    Zhu B; Sun J; Zhao Y; Zhang L; Yu J
    Adv Mater; 2024 Feb; 36(8):e2310600. PubMed ID: 37988721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels.
    Jiao H; Wang C; Xiong L; Tang J
    Acc Mater Res; 2022 Dec; 3(12):1206-1219. PubMed ID: 36583010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal imaging of charge transfer in photocatalyst particles.
    Chen R; Ren Z; Liang Y; Zhang G; Dittrich T; Liu R; Liu Y; Zhao Y; Pang S; An H; Ni C; Zhou P; Han K; Fan F; Li C
    Nature; 2022 Oct; 610(7931):296-301. PubMed ID: 36224420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-mediated electron transfer in photocatalysts.
    Xue J; Fujitsuka M; Majima T
    Chem Commun (Camb); 2021 Apr; 57(29):3532-3542. PubMed ID: 33729263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Photocatalytic Water Oxidation on Photocatalysts with Ferroelectric Single Domains.
    He J; Liu Y; Qu J; Xie H; Lu R; Fan F; Li C
    Adv Mater; 2023 Apr; 35(14):e2210374. PubMed ID: 36631722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Black Phosphorus-Based Semiconductor Heterojunctions for Photocatalytic Water Splitting.
    Liu F; Huang C; Liu CX; Shi R; Chen Y
    Chemistry; 2020 Apr; 26(20):4449-4460. PubMed ID: 31710131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.