BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38520895)

  • 1. Quantitative and structural changes of blood platelet cytoskeleton proteins in multiple sclerosis (MS).
    Dziedzic A; Michlewska S; Jóźwiak P; Dębski J; Karbownik MS; Łaczmański Ł; Kujawa D; Glińska S; Miller E; Niwald M; Kloc M; Balcerzak Ł; Saluk J
    J Autoimmun; 2024 May; 145():103204. PubMed ID: 38520895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubulin in Platelets: When the Shape Matters.
    Cuenca-Zamora EJ; Ferrer-Marín F; Rivera J; Teruel-Montoya R
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31315202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease.
    Liu H; Welburn JPI
    Open Biol; 2024 Jun; 14(6):240041. PubMed ID: 38835242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tubulin code in platelet biogenesis.
    Kimmerlin Q; Strassel C; Eckly A; Lanza F
    Semin Cell Dev Biol; 2023 Mar; 137():63-73. PubMed ID: 35148939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics.
    Zuidscherwoude M; Green HLH; Thomas SG
    Platelets; 2019; 30(1):23-30. PubMed ID: 29913076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function.
    Khan AO; Slater A; Maclachlan A; Nicolson PLR; Pike JA; Reyat JS; Yule J; Stapley R; Rayes J; Thomas SG; Morgan NV
    Haematologica; 2022 Jan; 107(1):243-259. PubMed ID: 33327716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal regulation of platelet formation: Coordination of F-actin and microtubules.
    Poulter NS; Thomas SG
    Int J Biochem Cell Biol; 2015 Sep; 66():69-74. PubMed ID: 26210823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation.
    van Dijk J; Bompard G; Cau J; Kunishima S; Rabeharivelo G; Mateos-Langerak J; Cazevieille C; Cavelier P; Boizet-Bonhoure B; Delsert C; Morin N
    BMC Biol; 2018 Oct; 16(1):116. PubMed ID: 30336771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered cytoskeleton organization in platelets from patients with MYH9-related disease.
    Canobbio I; Noris P; Pecci A; Balduini A; Balduini CL; Torti M
    J Thromb Haemost; 2005 May; 3(5):1026-35. PubMed ID: 15869600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and manipulation of the platelet and megakaryocyte cytoskeleton.
    Thon JN; Italiano JE
    Methods Mol Biol; 2012; 788():109-25. PubMed ID: 22130704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of actin, myosin and tubulin distribution during cytoplasmic granule movements associated with platelet adhesion.
    Cerecedo D; Stock R; González S; Reyes E; Mondragón R
    Haematologica; 2002 Nov; 87(11):1165-76. PubMed ID: 12414346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes.
    McLean WG; Pekiner C; Cullum NA; Casson IF
    Mol Neurobiol; 1992; 6(2-3):225-37. PubMed ID: 1476675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases.
    Mbiandjeu S; Balduini A; Malara A
    Thromb Haemost; 2022 May; 122(5):666-678. PubMed ID: 34218430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing.
    Bender M; Eckly A; Hartwig JH; Elvers M; Pleines I; Gupta S; Krohne G; Jeanclos E; Gohla A; Gurniak C; Gachet C; Witke W; Nieswandt B
    Blood; 2010 Sep; 116(10):1767-75. PubMed ID: 20530287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct characterization of cytoskeletal reorganization during blood platelet spreading.
    Paknikar AK; Eltzner B; Köster S
    Prog Biophys Mol Biol; 2019 Jul; 144():166-176. PubMed ID: 29843920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42.
    Pleines I; Dütting S; Cherpokova D; Eckly A; Meyer I; Morowski M; Krohne G; Schulze H; Gachet C; Debili N; Brakebusch C; Nieswandt B
    Blood; 2013 Oct; 122(18):3178-87. PubMed ID: 23861250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly.
    Kunishima S; Kobayashi R; Itoh TJ; Hamaguchi M; Saito H
    Blood; 2009 Jan; 113(2):458-61. PubMed ID: 18849486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Pro-Thrombotic Platelet Activity Associated with Thrombin/PAR1-Dependent Pathway Disorder in Patients with Secondary Progressive Multiple Sclerosis.
    Dziedzic A; Miller E; Bijak M; Przyslo L; Saluk-Bijak J
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33086557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamin 3 participates in the growth and development of megakaryocytes.
    Reems JA; Wang W; Tsubata K; Abdurrahman N; Sundell B; Tijssen MR; van der Schoot E; Di Summa F; Patel-Hett S; Italiano J; Gilligan DM
    Exp Hematol; 2008 Dec; 36(12):1714-27. PubMed ID: 19007685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfation of guinea pig megakaryocyte and platelet proteins.
    Schick BP; Jacoby JA
    J Cell Physiol; 1994 May; 159(2):356-64. PubMed ID: 8163574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.