BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38520959)

  • 1. Addressing common challenges of biotherapeutic protein peptide mapping using recombinant trypsin.
    Menneteau T; Saveliev S; Butré CI; Rivera AKG; Urh M; Delobel A
    J Pharm Biomed Anal; 2024 Jun; 243():116124. PubMed ID: 38520959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics.
    Walmsley SJ; Rudnick PA; Liang Y; Dong Q; Stein SE; Nesvizhskii AI
    J Proteome Res; 2013 Dec; 12(12):5666-80. PubMed ID: 24116745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb.
    Mouchahoir T; Schiel JE
    Anal Bioanal Chem; 2018 Mar; 410(8):2111-2126. PubMed ID: 29411091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutting edge proteomics: benchmarking of six commercial trypsins.
    Bunkenborg J; Espadas G; Molina H
    J Proteome Res; 2013 Aug; 12(8):3631-41. PubMed ID: 23819575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel filter-assisted protein precipitation (FAPP) based sample pre-treatment method for LC-MS peptide mapping for biosimilar characterization.
    Bhattacharya S; Rathore AS
    J Pharm Biomed Anal; 2023 Sep; 234():115527. PubMed ID: 37364451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an efficient LC-MS peptide mapping method using accelerated sample preparation for monoclonal antibodies.
    Jiang P; Li F; Ding J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jan; 1137():121895. PubMed ID: 31881514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-laboratory study of an optimised peptide mapping workflow using automated trypsin digestion for monitoring monoclonal antibody product quality attributes.
    Millán-Martín S; Jakes C; Carillo S; Buchanan T; Guender M; Kristensen DB; Sloth TM; Ørgaard M; Cook K; Bones J
    Anal Bioanal Chem; 2020 Oct; 412(25):6833-6848. PubMed ID: 32710279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing trypsin bias in large scale (phospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides.
    Tran BQ; Hernandez C; Waridel P; Potts A; Barblan J; Lisacek F; Quadroni M
    J Proteome Res; 2011 Feb; 10(2):800-11. PubMed ID: 21166477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides.
    Schober Y; Schramm T; Spengler B; Römpp A
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2475-83. PubMed ID: 21818808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins.
    Dasgupta BR; Antharavally BS; Tepp W; Evenson ML
    Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating chemical and disulfide heterogeneities in rituximab using reduced and non-reduced peptide mapping.
    Nupur N; Rathore AS
    J Sep Sci; 2022 Aug; 45(15):2887-2900. PubMed ID: 35670633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a tryptic digest by high-performance displacement chromatography and mass spectrometry.
    Frenz J; Quan CP; Hancock WS; Bourell J
    J Chromatogr; 1991 Sep; 557(1-2):289-305. PubMed ID: 1744202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus.
    Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z
    Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mirror cutting-assisted orthogonal digestion enabling large-scale and accurate protein complex characterization].
    Han R; Zhao L; An Y; Liang Z; Zhao Q; Zhang L; Zhang Y
    Se Pu; 2022 Mar; 40(3):224-233. PubMed ID: 35243832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution.
    Ai Y; Xu J; Gunawardena HP; Zare RN; Chen H
    J Am Soc Mass Spectrom; 2022 Jul; 33(7):1238-1249. PubMed ID: 35647885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and efficient glycoprotein identification through microwave-assisted enzymatic digestion.
    Segu ZM; Hammad LA; Mechref Y
    Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3461-8. PubMed ID: 21072803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and characterization of the tryptic peptide mapping of recombinant bovine growth hormone by reversed-phase high-performance liquid chromatography electrospray mass spectrometry.
    Chang JP; Kiehl DE; Kennington A
    Rapid Commun Mass Spectrom; 1997; 11(12):1266-70. PubMed ID: 9276973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of enzymatic digestion and liquid chromatography-mass spectrometry peptide mapping of the integral membrane protein bacteriorhodopsin.
    Hixson KK; Rodriguez N; Camp DG; Strittmatter EF; Lipton MS; Smith RD
    Electrophoresis; 2002 Sep; 23(18):3224-32. PubMed ID: 12298094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.