BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38521172)

  • 1. Machine learning application for predicting key properties of activated carbon produced from lignocellulosic biomass waste with chemical activation.
    Zou R; Yang Z; Zhang J; Lei R; Zhang W; Fnu F; Tsang DCW; Heyne J; Zhang X; Ruan R; Lei H
    Bioresour Technol; 2024 May; 399():130624. PubMed ID: 38521172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar.
    Li H; Ai Z; Yang L; Zhang W; Yang Z; Peng H; Leng L
    Bioresour Technol; 2023 Feb; 369():128417. PubMed ID: 36462763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning models for predicting biochar properties from lignocellulosic biomass torrefaction.
    Su G; Jiang P
    Bioresour Technol; 2024 May; 399():130519. PubMed ID: 38437964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning prediction of biochar yield based on biomass characteristics.
    Ma J; Zhang S; Liu X; Wang J
    Bioresour Technol; 2023 Dec; 389():129820. PubMed ID: 37805089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass.
    Li Y; Gupta R; You S
    Bioresour Technol; 2022 Sep; 359():127511. PubMed ID: 35752259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions.
    Zhu X; Li Y; Wang X
    Bioresour Technol; 2019 Sep; 288():121527. PubMed ID: 31136889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism.
    Gayathiri M; Pulingam T; Lee KT; Sudesh K
    Chemosphere; 2022 May; 294():133764. PubMed ID: 35093418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions.
    Dong Z; Bai X; Xu D; Li W
    Bioresour Technol; 2023 Jan; 367():128182. PubMed ID: 36307026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated carbon from biomass precursors using phosphoric acid: A review.
    Neme I; Gonfa G; Masi C
    Heliyon; 2022 Dec; 8(12):e11940. PubMed ID: 36478849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal.
    Osman AI; Blewitt J; Abu-Dahrieh JK; Farrell C; Al-Muhtaseb AH; Harrison J; Rooney DW
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37228-37241. PubMed ID: 31745803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting co-liquefaction bio-oil of sewage sludge and algal biomass via machine learning with experimental optimization: Focus on yield, nitrogen content, and energy recovery rate.
    Liu T; Zhang W; Xu D; Leng L; Li H; Wang S; He Y
    Sci Total Environ; 2024 Apr; 920():170779. PubMed ID: 38340849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar.
    Shen T; Peng H; Yuan X; Liang Y; Liu S; Wu Z; Leng L; Qin P
    J Hazard Mater; 2024 Mar; 466():133442. PubMed ID: 38244458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar production and its environmental applications: Recent developments and machine learning insights.
    Supraja KV; Kachroo H; Viswanathan G; Verma VK; Behera B; Doddapaneni TRKC; Kaushal P; Ahammad SZ; Singh V; Awasthi MK; Jain R
    Bioresour Technol; 2023 Nov; 387():129634. PubMed ID: 37573981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications.
    Jayakumar M; Hamda AS; Abo LD; Daba BJ; Venkatesa Prabhu S; Rangaraju M; Jabesa A; Periyasamy S; Suresh S; Baskar G
    Chemosphere; 2023 Dec; 345():140515. PubMed ID: 37871877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools.
    Godvin Sharmila V; Kumar Tyagi V; Varjani S; Rajesh Banu J
    Bioresour Technol; 2023 Nov; 387():129587. PubMed ID: 37549718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterisation of Activated Carbon from Palm Mixed Waste Treated with Trona Ore.
    Ukanwa KS; Patchigolla K; Sakrabani R; Anthony E
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33138276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends.
    Hoang AT; Kumar S; Lichtfouse E; Cheng CK; Varma RS; Senthilkumar N; Phong Nguyen PQ; Nguyen XP
    Chemosphere; 2022 Sep; 302():134825. PubMed ID: 35526681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution.
    Lawtae P; Tangsathitkulchai C
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage.
    Buaki-Sogó M; Zubizarreta L; García-Pellicer M; Quijano-López A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32650543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.