These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 38521323)
1. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323 [TBL] [Abstract][Full Text] [Related]
2. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
3. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014 [TBL] [Abstract][Full Text] [Related]
4. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
5. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
6. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
7. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of rhBMP-2 Loaded PCL/ Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530 [TBL] [Abstract][Full Text] [Related]
9. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
10. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering. Kim H; Hwangbo H; Koo Y; Kim G Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422 [TBL] [Abstract][Full Text] [Related]
12. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. Javkhlan Z; Hsu SH; Chen RS; Chen MH J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573 [TBL] [Abstract][Full Text] [Related]
13. 3D-printed PCL/β-TCP/CS composite artificial bone and histocompatibility study. Zheng C; Zhang M J Orthop Surg Res; 2023 Dec; 18(1):981. PubMed ID: 38129861 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
15. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/ Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855 [TBL] [Abstract][Full Text] [Related]
16. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible. Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742 [TBL] [Abstract][Full Text] [Related]
17. 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering. Jeong JE; Park SY; Shin JY; Seok JM; Byun JH; Oh SH; Kim WD; Lee JH; Park WH; Park SA Macromol Biosci; 2020 Dec; 20(12):e2000256. PubMed ID: 33164317 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
19. MgO-enhanced β-TCP promotes osteogenesis in both in vitro and in vivo rat models. Saito K; Inagaki Y; Uchihara Y; Okamoto M; Nishimura Y; Kawai A; Sugino T; Okamura K; Ogawa M; Kido A; Tanaka Y Sci Rep; 2024 Aug; 14(1):19725. PubMed ID: 39183238 [TBL] [Abstract][Full Text] [Related]
20. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]