BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 38521323)

  • 1. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds.
    Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Bhattacharjee A; Jo Y; Bose S
    J Mater Chem B; 2023 May; 11(21):4725-4739. PubMed ID: 37171110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.
    Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q
    Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically suitable and osteoinductive 3D-printed composite scaffolds with hydroxyapatite nanoparticles having diverse morphologies for bone tissue engineering.
    Wojasiński M; Podgórski R; Kowalczyk P; Latocha J; Prystupiuk K; Janowska O; Gierlotka S; Staniszewska M; Ciach T; Sobieszuk P
    J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35409. PubMed ID: 38786580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A potential hybrid nanocomposite of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fullerene for bone tissue regeneration and sustained drug release against bone infections.
    Ribeiro MEA; Huaman NRC; Folly MM; Gomez JGC; Sánchez Rodríguez RJ
    Int J Biol Macromol; 2023 Nov; 251():126531. PubMed ID: 37634778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion template fabricated heterogeneous bilayer gelatin-based scaffolds with sustained-delivery of lycium barbarum glycopeptide for periodontitis treatment.
    He S; Wen N; Chen X; Liu C; Xiao X; Li X; Yuan L; Mu Y
    J Biomater Sci Polym Ed; 2024 Jun; 35(9):1379-1399. PubMed ID: 38529842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study.
    Babaei M; Ebrahim-Najafabadi N; Mirzadeh M; Abdali H; Farnaghi M; Gharavi MK; Kheradmandfard M; Kharazi AZ; Poursamar SA
    Biomater Adv; 2024 Jul; 161():213900. PubMed ID: 38772132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates.
    Hassan MN; Eltawila AM; Mohamed-Ahmed S; Amin WM; Suliman S; Kandil S; Yassin MA; Mustafa K
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28056-28069. PubMed ID: 38795033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, In Vitro Evaluation and In Vivo Biocompatibility of Additive Manufacturing Three-Dimensional Printing of β beta-Tricalcium Phosphate Scaffolds for Bone Regeneration.
    Llorente JJ; Junquera L; Gallego L; Pérez-Basterrechea M; Suárez LI; Llorente S
    Biomedicines; 2024 May; 12(5):. PubMed ID: 38791011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast responsive biosilica-enriched gelatin microfibrillar microenvironments.
    Olăreț E; Dinescu S; Dobranici AE; Ginghină RE; Voicu G; Mihăilescu M; Curti F; Banciu DD; Sava B; Amarie S; Lungu A; Stancu IC; Mastalier BSM
    Biomater Adv; 2024 Jul; 161():213894. PubMed ID: 38796956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair.
    Hu X; Chen J; Yang S; Zhang Z; Wu H; He J; Qin L; Cao J; Xiong C; Li K; Liu X; Qian Z
    Small; 2024 May; ():e2403681. PubMed ID: 38804867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual release of daptomycin and BMP-2 from a composite of β-TCP ceramic and ADA gelatin.
    Ritschl L; Schilling P; Wittmer A; Serr A; Schmal H; Seidenstuecker M
    BMC Biotechnol; 2024 Jun; 24(1):38. PubMed ID: 38831403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Instructive Behavior of Composite Scaffolds in a Co-Culture of Human Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells.
    Kontogianni GI; Bonatti AF; De Maria C; Naseem R; Coelho C; Alpantaki K; Batsali A; Pontikoglou C; Quadros P; Dalgarno K; Vozzi G; Vitale-Brovarone C; Chatzinikolaidou M
    J Funct Biomater; 2024 Apr; 15(5):. PubMed ID: 38786628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
    Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M
    Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds.
    Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA
    Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.