These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38521767)
41. Soft anharmonic phonons and ultralow thermal conductivity in Mg Ding J; Lanigan-Atkins T; Calderón-Cueva M; Banerjee A; Abernathy DL; Said A; Zevalkink A; Delaire O Sci Adv; 2021 May; 7(21):. PubMed ID: 34020958 [TBL] [Abstract][Full Text] [Related]
42. Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity. He J; Yu C; Lu S; Shan S; Zhang Z; Chen J Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37804826 [TBL] [Abstract][Full Text] [Related]
43. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit. Rundle J; Leoni S J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253 [TBL] [Abstract][Full Text] [Related]
44. Soft phonon modes lead to suppressed thermal conductivity in Ag-based chalcopyrites under high pressure. Yuan K; Zhang X; Gao Y; Tang D Phys Chem Chem Phys; 2023 Sep; 25(36):24883-24893. PubMed ID: 37681237 [TBL] [Abstract][Full Text] [Related]
45. Band Structure, Phonon Spectrum and Thermoelectric Properties of Ag Pshenay-Severin D; Guin SN; Konstantinov P; Novikov S; Rathore E; Biswas K; Burkov A Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770135 [TBL] [Abstract][Full Text] [Related]
46. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Kim SI; Lee KH; Mun HA; Kim HS; Hwang SW; Roh JW; Yang DJ; Shin WH; Li XS; Lee YH; Snyder GJ; Kim SW Science; 2015 Apr; 348(6230):109-14. PubMed ID: 25838382 [TBL] [Abstract][Full Text] [Related]
47. Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi Vijay V; Harish S; Archana J; Navaneethan M J Colloid Interface Sci; 2022 Apr; 612():97-110. PubMed ID: 34979414 [TBL] [Abstract][Full Text] [Related]
48. Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior of AgCrSe Wang C; Chen Y Nano Lett; 2023 Apr; 23(8):3524-3531. PubMed ID: 37067069 [TBL] [Abstract][Full Text] [Related]
49. High Quality Factor Enabled by Multiscale Phonon Scattering for Enhancing Thermoelectrics in Low-Solubility n-Type PbTe-Cu Liu H; Chen Z; Tang J; Zhong Y; Guo X; Zhang F; Ang R ACS Appl Mater Interfaces; 2020 Nov; 12(47):52952-52958. PubMed ID: 33180452 [TBL] [Abstract][Full Text] [Related]
50. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900 [TBL] [Abstract][Full Text] [Related]
51. Defect Engineering for High-Performance n-Type PbSe Thermoelectrics. Zhou C; Lee YK; Cha J; Yoo B; Cho SP; Hyeon T; Chung I J Am Chem Soc; 2018 Jul; 140(29):9282-9290. PubMed ID: 29956926 [TBL] [Abstract][Full Text] [Related]
52. All-Scale Hierarchical Structure Contributing to Ultralow Thermal Conductivity of Zintl Phase CaAg Chen J; Xue W; Chen C; Li H; Cai C; Zhang Q; Wang Y Adv Sci (Weinh); 2021 Jun; 8(11):2100109. PubMed ID: 34141525 [TBL] [Abstract][Full Text] [Related]
53. First-Principles Study of Anharmonic Lattice Dynamics in Low Thermal Conductivity AgCrSe_{2}: Evidence for a Large Resonant Four-Phonon Scattering. Xie L; Feng JH; Li R; He JQ Phys Rev Lett; 2020 Dec; 125(24):245901. PubMed ID: 33412052 [TBL] [Abstract][Full Text] [Related]
54. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds. Pandey T; Singh AK Phys Chem Chem Phys; 2015 Jul; 17(26):16917-26. PubMed ID: 26060054 [TBL] [Abstract][Full Text] [Related]
55. Zintl-phase Eu Chen C; Xue W; Li S; Zhang Z; Li X; Wang X; Liu Y; Sui J; Liu X; Cao F; Ren Z; Chu CW; Wang Y; Zhang Q Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2831-2836. PubMed ID: 30718395 [TBL] [Abstract][Full Text] [Related]
56. Strain effects on phonon transport in antimonene investigated using a first-principles study. Zhang AX; Liu JT; Guo SD; Li HC Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286 [TBL] [Abstract][Full Text] [Related]
57. Realization of Fine-Tuning the Lattice Thermal Conductivity and Anharmonicity in Layered Semiconductors via Entropy Engineering. Chen H; Fu J; Huang S; Qiu Y; Zhao E; Li S; Huang J; Dai P; Fan H; Xiao B Adv Mater; 2024 Aug; 36(31):e2400911. PubMed ID: 38552667 [TBL] [Abstract][Full Text] [Related]
58. Tuning phonon transport spectrum for better thermoelectric materials. Hori T; Shiomi J Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366 [TBL] [Abstract][Full Text] [Related]
59. Ultralow lattice thermal conductivity of binary compounds A Zeng S; Fang L; Tu Y; Zulfiqar M; Li G Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719 [TBL] [Abstract][Full Text] [Related]
60. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Sarkar D; Bhui A; Maria I; Dutta M; Biswas K Chem Soc Rev; 2024 Jun; 53(12):6100-6149. PubMed ID: 38717749 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]