These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38522108)

  • 1. Grating-assisted hot-electron photodetectors for S- and C-band telecommunication.
    Shao W; Cui W; Xin Y; Hu J; Li X
    Nanotechnology; 2024 Apr; 35(27):. PubMed ID: 38522108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Five-layer planar hot-electron photodetectors at telecommunication wavelength of 1550 nm.
    Shao W; Hu J; Wang Y
    Opt Express; 2022 Jul; 30(14):25555-25566. PubMed ID: 36237083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Planar Broadband Hot-Electron Photodetection through Platinum-Dielectric Triple Junctions.
    Yang X; Wang Y; Li Y; Cui W; Hu J; Zhou Q; Shao W
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of gap plasmon resonance for high-responsivity metal-insulator-metal near-infrared hot-electron photodetectors.
    Hu X; Li F; Wu H; Liu W
    Opt Lett; 2022 Jan; 47(1):42-45. PubMed ID: 34951878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar dual-cavity hot-electron photodetectors.
    Shao W; Yang Q; Zhang C; Wu S; Li X
    Nanoscale; 2019 Jan; 11(3):1396-1402. PubMed ID: 30604808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar microcavity-integrated hot-electron photodetector.
    Zhang C; Wu K; Zhan Y; Giannini V; Li X
    Nanoscale; 2016 May; 8(19):10323-9. PubMed ID: 27128730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating.
    Zhang Q; Zhang C; Qin L; Li X
    Opt Lett; 2018 Jul; 43(14):3325-3328. PubMed ID: 30004497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar hot-electron photodetection with polarity-switchable photocurrents controlled by the working wavelength.
    Shao W; Cui W; Hu J; Wang Y; Tang J; Li X
    Opt Express; 2023 Jul; 31(15):25220-25229. PubMed ID: 37475332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a binary metal micron grating and its application in near-infrared hot-electron photodetectors.
    Hu XL; Li F; Xu SH; Liu WJ
    Opt Lett; 2023 Aug; 48(15):4033-4036. PubMed ID: 37527111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeSn-on-insulator dual-waveband resonant-cavity-enhanced photodetectors at the 2  µm and 1.55  µm optical communication bands.
    Chen Q; Wu S; Zhang L; Burt D; Zhou H; Nam D; Fan W; Tan CS
    Opt Lett; 2021 Aug; 46(15):3809-3812. PubMed ID: 34329287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection.
    Zhai Y; Chen G; Ji J; Ma X; Wu Z; Li Y; Wang Q
    Nanotechnology; 2019 Sep; 30(37):375201. PubMed ID: 31082806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Bound States in the Continuum Metasurface-Semiconductor-Metal Architecture Enables Efficient Hot-Electron-Based Photodetector.
    Wang Z; Sun J; Wu C; Li J; Wang L; Zhang Y; Li Z; Zheng X; Wen L
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32836-32846. PubMed ID: 38874560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias voltage-tuned hot-electron optical sensing with planar Au-MoS
    Shao W; Yang X; Hu J; Wang Y
    Opt Express; 2022 Nov; 30(24):43172-43181. PubMed ID: 36523021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Semiconductor-Metal GeSn Photodetectors on Silicon for Short-Wave Infrared Applications.
    Ghosh S; Lin KC; Tsai CH; Kumar H; Chen Q; Zhang L; Son B; Tan CS; Kim M; Mukhopadhyay B; Chang GE
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32839407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons.
    Liang W; Xiao Z; Xu H; Deng H; Li H; Chen W; Liu Z; Long Y
    Opt Express; 2020 Oct; 28(21):31330-31344. PubMed ID: 33115108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon enhanced GeSn photodetectors operating at 2 µm.
    Zhou H; Zhang L; Tong J; Wu S; Son B; Chen Q; Zhang DH; Tan CS
    Opt Express; 2021 Mar; 29(6):8498-8509. PubMed ID: 33820296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-Insensitive Waveguide Schottky Photodetectors Based on Mode Hybridization Effects in Asymmetric Plasmonic Waveguides.
    Li Q; Tu J; Tian Y; Zhao Y
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.
    Chou JB; Li XH; Wang Y; Fenning DP; Elfaer A; Viegas J; Jouiad M; Shao-Horn Y; Kim SG
    Opt Express; 2016 Sep; 24(18):A1234-44. PubMed ID: 27607726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-Based Embedded Trenches of Active Antennas for High-Responsivity Omnidirectional Photodetection at Telecommunication Wavelengths.
    Lin KT; Chan CJ; Lai YS; Shiu LT; Lin CC; Chen HL
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3150-3159. PubMed ID: 30624888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical characterization of optical resonance effects in laterally-nanostructured organic photodetectors.
    Schardt J; Gerken M
    Opt Express; 2023 Oct; 31(22):36136-36149. PubMed ID: 38017769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.