These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38522158)
1. Carbonyl and imine conjugated frameworks for aqueous Organo-Aluminum batteries with high specific capacity and low dissolution. Lu Y; Hu C; Hu Y; Zhang W; Li Z J Colloid Interface Sci; 2024 Jul; 665():181-187. PubMed ID: 38522158 [TBL] [Abstract][Full Text] [Related]
2. Synergistic π-Conjugation Organic Cathode for Ultra-Stable Aqueous Aluminum Batteries. Su J; Zhang M; Tian H; Han M; Sun Z; Du K; Cui F; Li J; Huang W; Hu Y Small; 2024 Jul; 20(29):e2312086. PubMed ID: 38412409 [TBL] [Abstract][Full Text] [Related]
3. Intermolecular Hydrogen Bonding Networks Stabilized Organic Supramolecular Cathode for Ultra-High Capacity and Ultra-Long Cycle Life Rechargeable Aluminum Batteries. Yang Z; Meng P; Jiang M; Zhang X; Zhang J; Fu C Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202403424. PubMed ID: 38545934 [TBL] [Abstract][Full Text] [Related]
4. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries. Huang Z; Du X; Ma M; Wang S; Xie Y; Meng Y; You W; Xiong L ChemSusChem; 2023 May; 16(9):e202202358. PubMed ID: 36732888 [TBL] [Abstract][Full Text] [Related]
5. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
6. Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Ke SW; Li W; Gao L; Su J; Luo R; Yuan S; He P; Zuo JL Angew Chem Int Ed Engl; 2024 Sep; ():e202417493. PubMed ID: 39292224 [TBL] [Abstract][Full Text] [Related]
7. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450 [TBL] [Abstract][Full Text] [Related]
8. Effects of Conjugated Structure on the Magnesium Storage Performance of Dianhydrides. Yang H; Xu F Chemphyschem; 2021 Jul; 22(14):1455-1460. PubMed ID: 34117706 [TBL] [Abstract][Full Text] [Related]
9. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
10. Electropolymerization of a Carbonyl-Modified Dihydropyrazine Derivative for Aqueous Zinc Batteries with Ultrahigh Cycling Stability. Wang D; Bai Y; Zhou Z; Yao Q; Cao W; Ma Y; Wang C ACS Appl Mater Interfaces; 2024 May; 16(20):26121-26129. PubMed ID: 38728577 [TBL] [Abstract][Full Text] [Related]
11. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries. Li K; Xu S; Han D; Si Z; Wang HG Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815 [TBL] [Abstract][Full Text] [Related]
12. Rechargeable Aqueous Aluminum Organic Batteries. Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518 [TBL] [Abstract][Full Text] [Related]
13. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276 [TBL] [Abstract][Full Text] [Related]
14. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na Yao Y; Pei M; Su C; Jin X; Qu Y; Song Z; Jiang W; Jian X; Hu F Small; 2024 Aug; 20(34):e2401481. PubMed ID: 38616774 [TBL] [Abstract][Full Text] [Related]
16. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
17. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries. Li Q; Wang H; Wang HG; Si Z; Li C; Bai J ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898 [TBL] [Abstract][Full Text] [Related]
18. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K Su Z; Huang J; Wang R; Zhang Y; Zeng L; Zhang Y; Fan H J Colloid Interface Sci; 2023 Jun; 639():7-13. PubMed ID: 36796111 [TBL] [Abstract][Full Text] [Related]
19. Long Cycle Life for Rechargeable Lithium Battery using Organic Small Molecule Dihydrodibenzo[c,h][2,6]naphthyridine-5,11-dione as a Cathode after Isoindigo Pigment Isomerization. Yang M; Hu W; Li J; Chen T; Zhao S; Chen X; Wang S; Jin H Adv Sci (Weinh); 2024 Jan; 11(4):e2307134. PubMed ID: 38032135 [TBL] [Abstract][Full Text] [Related]
20. A carbonyl-rich conjugated organic compound for aqueous rechargeable Na Jing R; Yang J; Zhao X; Wang Y; Shao P; Shi M; Yan C J Colloid Interface Sci; 2024 Mar; 658():678-687. PubMed ID: 38134676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]