These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38522158)
21. A Highly Immobilized Organic Anode Material for High Performance Rechargeable Lithium Batteries. Zhang S; Ren S; Han D; Xiao M; Wang S; Sun L; Meng Y ACS Appl Mater Interfaces; 2020 Aug; 12(32):36237-36246. PubMed ID: 32689786 [TBL] [Abstract][Full Text] [Related]
22. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery. Yu P; An J; Wang Z; Fu Y; Guo W Small; 2024 Apr; 20(14):e2308881. PubMed ID: 37984861 [TBL] [Abstract][Full Text] [Related]
23. Fully Conjugated Phthalocyanine Copper Metal-Organic Frameworks for Sodium-Iodine Batteries with Long-Time-Cycling Durability. Wang F; Liu Z; Yang C; Zhong H; Nam G; Zhang P; Dong R; Wu Y; Cho J; Zhang J; Feng X Adv Mater; 2020 Jan; 32(4):e1905361. PubMed ID: 31815328 [TBL] [Abstract][Full Text] [Related]
24. Heterostructure Fe Long Z; Shi C; Wu C; Yuan L; Qiao H; Wang K Nanoscale; 2022 Feb; 14(5):1906-1920. PubMed ID: 35045148 [TBL] [Abstract][Full Text] [Related]
25. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916 [TBL] [Abstract][Full Text] [Related]
26. Metal-Organic Framework for Aluminum based Energy Storage Devices: Utilizing Redox Additives for Significant Performance Enhancement. De P; Priya S; Halder J; Srivastava AK; Chandra A ACS Appl Mater Interfaces; 2024 May; 16(20):26299-26315. PubMed ID: 38733338 [TBL] [Abstract][Full Text] [Related]
27. Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum-Selenium Batteries. Kong Y; Nanjundan AK; Liu Y; Song H; Huang X; Yu C Small; 2019 Dec; 15(51):e1904310. PubMed ID: 31724826 [TBL] [Abstract][Full Text] [Related]
28. β-Hydrogen of Polythiophene Induced Aluminum Ion Storage for High-Performance Al-Polythiophene Batteries. Kong D; Fan H; Ding X; Wang D; Tian S; Hu H; Du D; Li Y; Gao X; Hu H; Xue Q; Yan Z; Ren H; Xing W ACS Appl Mater Interfaces; 2020 Oct; 12(41):46065-46072. PubMed ID: 32955247 [TBL] [Abstract][Full Text] [Related]
29. Interaction Mechanism between Cyano-Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries. Lu Y; Chen M; Wang Y; Hu Y; Wang X; Zhang W; Li Z Small Methods; 2023 Oct; 7(10):e2300663. PubMed ID: 37462249 [TBL] [Abstract][Full Text] [Related]
30. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
31. Enhancing organic cathodes of aqueous zinc-ion batteries Ma G; Ju Z; Xu X; Xu Y; Sun Y; Wang Y; Zhang G; Cai M; Pan L; Yu G Chem Sci; 2023 Nov; 14(44):12589-12597. PubMed ID: 38020381 [TBL] [Abstract][Full Text] [Related]
32. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
33. Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon. Yang B; Ma Y; Bin D; Lu H; Xia Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58818-58826. PubMed ID: 34846135 [TBL] [Abstract][Full Text] [Related]
34. H Wang D; Li Q; Ying W; Han C; Wang Y; Zhao Y; Li H; Zhi C Small; 2022 Jun; 18(22):e2200463. PubMed ID: 35523734 [TBL] [Abstract][Full Text] [Related]
35. Methyl-Symmetrically Substituted Poly(3,4-Dimethylthiophene) as Cathode for Aluminum Ion Batteries. Li S; Wang J; Zhou M; Jiang K; Wang K Chemistry; 2024 Mar; 30(18):e202303892. PubMed ID: 38279783 [TBL] [Abstract][Full Text] [Related]
36. Architecting a Stable High-Energy Aqueous Al-Ion Battery. Yan C; Lv C; Wang L; Cui W; Zhang L; Dinh KN; Tan H; Wu C; Wu T; Ren Y; Chen J; Liu Z; Srinivasan M; Rui X; Yan Q; Yu G J Am Chem Soc; 2020 Sep; 142(36):15295-15304. PubMed ID: 32786747 [TBL] [Abstract][Full Text] [Related]
37. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
38. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life. Li S; Shang J; Li M; Xu M; Zeng F; Yin H; Tang Y; Han C; Cheng HM Adv Mater; 2023 Dec; 35(50):e2207115. PubMed ID: 36177698 [TBL] [Abstract][Full Text] [Related]
39. Low-Dimensional and High-Crystallinity Carbonyl Cathodes Prepared by Physical Vapor Deposition for Green Aluminum Organic Batteries. Luo W; Liu Y; Li F; Zhang Z; Chao Z; Fan J ACS Appl Mater Interfaces; 2023 Aug; 15(31):37433-37441. PubMed ID: 37489932 [TBL] [Abstract][Full Text] [Related]
40. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage. Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]