These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38522221)

  • 1. SSTU: Swin-Spectral Transformer U-Net for hyperspectral whole slide image reconstruction.
    Wang Y; Gu Y; Nanding A
    Comput Med Imaging Graph; 2024 Jun; 114():102367. PubMed ID: 38522221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer.
    Li Y; Sun X; Wang S; Li X; Qin Y; Pan J; Chen P
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36889004
    [No Abstract]   [Full Text] [Related]  

  • 3. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
    Li GY; Chen J; Jang SI; Gong K; Li Q
    Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformer-Based Model with Dynamic Attention Pyramid Head for Semantic Segmentation of VHR Remote Sensing Imagery.
    Xu Y; Zhou S; Huang Y
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HMFT: Hyperspectral and Multispectral Image Fusion Super-Resolution Method Based on Efficient Transformer and Spatial-Spectral Attention Mechanism.
    Qiao B; Xu B; Xie Y; Lin Y; Liu Y; Zuo X
    Comput Intell Neurosci; 2023; 2023():4725986. PubMed ID: 36909978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images.
    Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z
    Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid U-Net and Swin-transformer network for limited-angle cardiac computed tomography.
    Xu Y; Han S; Wang D; Wang G; Maltz JS; Yu H
    Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38604178
    [No Abstract]   [Full Text] [Related]  

  • 9. Dual encoder network with transformer-CNN for multi-organ segmentation.
    Hong Z; Chen M; Hu W; Yan S; Qu A; Chen L; Chen J
    Med Biol Eng Comput; 2023 Mar; 61(3):661-671. PubMed ID: 36580181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module.
    Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW
    J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ST-Unet: Swin Transformer boosted U-Net with Cross-Layer Feature Enhancement for medical image segmentation.
    Zhang J; Qin Q; Ye Q; Ruan T
    Comput Biol Med; 2023 Feb; 153():106516. PubMed ID: 36628914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images.
    Fang K; Ouyang J; Hu B
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Swin Transformer for Automatic Medical Image Segmentation.
    Wei C; Ren S; Guo K; Hu H; Liang J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging.
    Ma L; Rathgeb A; Mubarak H; Tran M; Fei B
    J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35578386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images.
    Tagnamas J; Ramadan H; Yahyaouy A; Tairi H
    Vis Comput Ind Biomed Art; 2024 Jan; 7(1):2. PubMed ID: 38273164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSTF-Unet: Spatial-Spectral Transformer-Based U-Net for High-Resolution Hyperspectral Image Acquisition.
    Liu H; Feng C; Dian R; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37738195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial-Spectral Attention 3DCNN and a Transformer.
    Wang T; Xu Z; Hu H; Xu H; Zhao Y; Mao X
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Siamese Swin-Unet for image change detection.
    Tang Y; Cao Z; Guo N; Jiang M
    Sci Rep; 2024 Feb; 14(1):4577. PubMed ID: 38403711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Feature-Learning with a Unified Model for Hyperspectral Image Classification.
    Arshad T; Zhang J; Ullah I; Ghadi YY; Alfarraj O; Gafar A
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas.
    Cai H; Feng X; Yin R; Zhao Y; Guo L; Fan X; Liao J
    J Pathol; 2023 Feb; 259(2):125-135. PubMed ID: 36318158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.