These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38522281)

  • 1. Sediment source fingerprints of natural processes and anthropogenic pressures: A contribution to manage the Paraopeba River basin impacted by the B1 tailings dam collapse.
    Acuna-Alonso C; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; de Melo MC; Valera CA; Sanches Fernandes LF; Pacheco FAL; Álvarez X
    J Environ Manage; 2024 Apr; 356():120590. PubMed ID: 38522281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Pacheco FAL; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; Carvalho de Melo M; Valera CA; Sanches Fernandes LF
    Sci Total Environ; 2022 Feb; 809():151157. PubMed ID: 34687709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scenarios of environmental deterioration in the Paraopeba River, in the three years after the breach of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2023 Sep; 891():164426. PubMed ID: 37236470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A partial least squares-path model of causality among environmental deterioration indicators in the dry period of Paraopeba River after the rupture of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; Sanches Fernandes LF; Pinheiro Fernandes AC; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Environ Pollut; 2022 Aug; 306():119341. PubMed ID: 35469926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil.
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Fernandes ACP; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2022 Dec; 851(Pt 1):158248. PubMed ID: 36028023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First year after the Brumadinho tailings' dam collapse: Spatial and seasonal variation of trace elements in sediments, fishes and macrophytes from the Paraopeba River, Brazil.
    Parente CET; Lino AS; Carvalho GO; Pizzochero AC; Azevedo-Silva CE; Freitas MO; Teixeira C; Moura RL; Ferreira Filho VJM; Malm O
    Environ Res; 2021 Feb; 193():110526. PubMed ID: 33249035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework model to integrate sources and pathways in the assessment of river water pollution.
    Bessa Santos RM; Farias do Valle Junior R; Abreu Pires de Melo Silva MM; Tarlé Pissarra TC; Carvalho de Melo M; Valera CA; Leal Pacheco FA; Sanches Fernandes LF
    Environ Pollut; 2024 Apr; 347():123661. PubMed ID: 38417605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring a new approach for assessing the fate and behavior of the tailings released by the Brumadinho dam collapse (Minas Gerais, Brazil).
    Kobayashi H; Garnier J; Mulholland DS; Quantin C; Haurine F; Tonha M; Joko C; Olivetti D; Freydier R; Seyler P; Martinez JM; Roig HL
    J Hazard Mater; 2023 Apr; 448():130828. PubMed ID: 36731315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of tributaries contributions using a confluence-based sediment fingerprinting approach in the Canche river watershed (France).
    Patault E; Alary C; Franke C; Abriak NE
    Sci Total Environ; 2019 Jun; 668():457-469. PubMed ID: 30852221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil.
    Teixeira DBS; Veloso MF; Ferreira FLV; Gleriani JM; do Amaral CH
    Environ Monit Assess; 2021 Jun; 193(7):435. PubMed ID: 34152464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brumadinho dam collapse induces changes in the microbiome and the antibiotic resistance of the Paraopeba River (Minas Gerais, Brazil).
    Thompson C; Garcia G; Masi BP; Freitas T; Paz PHC; Leal CV; Otsuki K; Tschoeke D; Salazar V; Soares M; Lopes G; Bacha L; Cosenza C; Vieira VV; Botelho ACN; de Oliveira BCV; de Rezende CE; Teixeira L; Thompson F
    Sci Total Environ; 2023 Mar; 865():161278. PubMed ID: 36592904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water security threats and challenges following the rupture of large tailings dams.
    Pacheco FAL; de Oliveira MD; Oliveira MS; Libânio M; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; de Melo MC; Valera CA; Fernandes LFS
    Sci Total Environ; 2022 Aug; 834():155285. PubMed ID: 35447180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River.
    Thompson F; de Oliveira BC; Cordeiro MC; Masi BP; Rangel TP; Paz P; Freitas T; Lopes G; Silva BS; S Cabral A; Soares M; Lacerda D; Dos Santos Vergilio C; Lopes-Ferreira M; Lima C; Thompson C; de Rezende CE
    Sci Total Environ; 2020 Feb; 705():135914. PubMed ID: 31838417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal speciation of the Paraopeba river after the Brumadinho dam failure.
    Teramoto EH; Gemeiner H; Zanatta MBT; Menegário AA; Chang HK
    Sci Total Environ; 2021 Feb; 757():143917. PubMed ID: 33321338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil.
    Souza APD; Teodoro PE; Teodoro LPR; Taveira AC; de Oliveira-Júnior JF; Della-Silva JL; Baio FHR; Lima M; da Silva Junior CA
    Environ Monit Assess; 2021 Aug; 193(9):606. PubMed ID: 34453609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geomorphologic risk zoning to anticipate tailings dams' hazards: A study in the Brumadinho's mining area, Minas Gerais, Brazil.
    Pereira P; Fernandes LFS; do Valle Junior RF; de Melo Silva MMAP; Pacheco FAL; de Melo MC; Valera CA; Pissarra TCT
    Sci Total Environ; 2024 Feb; 912():169136. PubMed ID: 38072273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microbial profile of rivers and lagoons three years after the impact of the world's largest mining disaster (Fundão dam, Brazil).
    Almeida PIN; Jesus HE; Pereira PHF; Vieira CED; Bianchini A; Martins CMG; Santos HFD
    Environ Res; 2023 Jan; 216(Pt 4):114710. PubMed ID: 36334830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.
    Ozsoy G; Aksoy E; Dirim MS; Tumsavas Z
    Environ Manage; 2012 Oct; 50(4):679-94. PubMed ID: 22810626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediment source fingerprinting as an aid to large-scale landscape conservation and restoration: A review for the Mississippi River Basin.
    Xu Z; Belmont P; Brahney J; Gellis AC
    J Environ Manage; 2022 Dec; 324():116260. PubMed ID: 36179467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical evaluation of bottom sediments affected by historic mining and the rupture of the Fundão dam, Brazil.
    Dos Reis DA; Nascimento LP; de Abreu AT; Nalini Júnior HA; Roeser HMP; da Fonseca Santiago A
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):4365-4375. PubMed ID: 31832945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.