BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 38522522)

  • 1. Quality assurance of late gadolinium enhancement cardiac magnetic resonance images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimization.
    Zaman S; Vimalesvaran K; Chappell D; Varela M; Peters NS; Shiwani H; Knott KD; Davies RH; Moon JC; Bharath AA; Linton NW; Francis DP; Cole GD; Howard JP
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):101040. PubMed ID: 38522522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion-corrected free-breathing LGE delivers high quality imaging and reduces scan time by half: an independent validation study.
    Captur G; Lobascio I; Ye Y; Culotta V; Boubertakh R; Xue H; Kellman P; Moon JC
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1893-1901. PubMed ID: 31104178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach.
    Fahmy AS; Rowin EJ; Chan RH; Manning WJ; Maron MS; Nezafat R
    J Magn Reson Imaging; 2021 Jul; 54(1):303-312. PubMed ID: 33599043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation.
    Holtackers RJ; Van De Heyning CM; Nazir MS; Rashid I; Ntalas I; Rahman H; Botnar RM; Chiribiri A
    J Cardiovasc Magn Reson; 2019 Jul; 21(1):44. PubMed ID: 31352900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fast multi-slice and standard segmented techniques for detection of late gadolinium enhancement in ischemic and non-ischemic cardiomyopathy - a prospective clinical cardiovascular magnetic resonance trial.
    Muehlberg F; Arnhold K; Fritschi S; Funk S; Prothmann M; Kermer J; Zange L; von Knobelsdorff-Brenkenhoff F; Schulz-Menger J
    J Cardiovasc Magn Reson; 2018 Feb; 20(1):13. PubMed ID: 29458430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy.
    Zhang Q; Burrage MK; Lukaschuk E; Shanmuganathan M; Popescu IA; Nikolaidou C; Mills R; Werys K; Hann E; Barutcu A; Polat SD; ; Salerno M; Jerosch-Herold M; Kwong RY; Watkins HC; Kramer CM; Neubauer S; Ferreira VM; Piechnik SK
    Circulation; 2021 Aug; 144(8):589-599. PubMed ID: 34229451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography.
    Ginami G; Neji R; Rashid I; Chiribiri A; Ismail TF; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):94. PubMed ID: 29178893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence for Contrast-Free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-Based Virtual Native Enhancement.
    Zhang Q; Burrage MK; Shanmuganathan M; Gonzales RA; Lukaschuk E; Thomas KE; Mills R; Leal Pelado J; Nikolaidou C; Popescu IA; Lee YP; Zhang X; Dharmakumar R; Myerson SG; Rider O; ; Channon KM; Neubauer S; Piechnik SK; Ferreira VM
    Circulation; 2022 Nov; 146(20):1492-1503. PubMed ID: 36124774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance.
    Martini N; Aimo A; Barison A; Della Latta D; Vergaro G; Aquaro GD; Ripoli A; Emdin M; Chiappino D
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):84. PubMed ID: 33287829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The image quality and diagnostic accuracy of T1-mapping-based synthetic late gadolinium enhancement imaging: comparison with conventional late gadolinium enhancement imaging in real-life clinical situation.
    Lee S; Kim P; Im DJ; Suh YJ; Hong YJ; Choi BW; Kim YJ
    J Cardiovasc Magn Reson; 2022 Apr; 24(1):28. PubMed ID: 35418081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification.
    van der Velde N; Hassing HC; Bakker BJ; Wielopolski PA; Lebel RM; Janich MA; Kardys I; Budde RPJ; Hirsch A
    Eur Radiol; 2021 Jun; 31(6):3846-3855. PubMed ID: 33219845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texture signatures of native myocardial T
    Neisius U; El-Rewaidy H; Kucukseymen S; Tsao CW; Mancio J; Nakamori S; Manning WJ; Nezafat R
    J Magn Reson Imaging; 2020 Sep; 52(3):906-919. PubMed ID: 31971296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results'.
    Bratis K; Henningsson M; Grigoratos C; Dell'Omodarme M; Chasapides K; Botnar R; Nagel E
    J Cardiovasc Magn Reson; 2017 Dec; 19(1):97. PubMed ID: 29202776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of acute myocarditis by cardiovascular MR: diagnostic performance of shortened protocols.
    Chu GC; Flewitt JA; Mikami Y; Vermes E; Friedrich MG
    Int J Cardiovasc Imaging; 2013 Jun; 29(5):1077-83. PubMed ID: 23404383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Munoz C; Bustin A; Neji R; Kunze KP; Forman C; Schmidt M; Hajhosseiny R; Masci PG; Zeilinger M; Wuest W; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2020 Jul; 22(1):53. PubMed ID: 32684167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar.
    Francis R; Kellman P; Kotecha T; Baggiano A; Norrington K; Martinez-Naharro A; Nordin S; Knight DS; Rakhit RD; Lockie T; Hawkins PN; Moon JC; Hausenloy DJ; Xue H; Hansen MS; Fontana M
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):91. PubMed ID: 29162123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of late gadolinium enhancement image acquisition resolution on neural network based automatic scar segmentation.
    Hoh T; Margolis I; Weine J; Joyce T; Manka R; Weisskopf M; Cesarovic N; Fuetterer M; Kozerke S
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):101031. PubMed ID: 38431078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging.
    Ferreira VM; Piechnik SK; Dall'Armellina E; Karamitsos TD; Francis JM; Ntusi N; Holloway C; Choudhury RP; Kardos A; Robson MD; Friedrich MG; Neubauer S
    JACC Cardiovasc Imaging; 2013 Oct; 6(10):1048-1058. PubMed ID: 24011774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.
    Avard E; Shiri I; Hajianfar G; Abdollahi H; Kalantari KR; Houshmand G; Kasani K; Bitarafan-Rajabi A; Deevband MR; Oveisi M; Zaidi H
    Comput Biol Med; 2022 Feb; 141():105145. PubMed ID: 34929466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic late gadolinium enhancement cardiac magnetic resonance for diagnosing myocardial scar.
    Abdula G; Nickander J; Sörensson P; Lundin M; Kellman P; Sigfridsson A; Ugander M
    Scand Cardiovasc J; 2018 Jun; 52(3):127-132. PubMed ID: 29544374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.