These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Passive wing deployment and retraction in beetles and flapping microrobots. Phan HV; Park HC; Floreano D Nature; 2024 Aug; 632(8027):1067-1072. PubMed ID: 39085611 [TBL] [Abstract][Full Text] [Related]
8. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona. Williams KK; McMillin JD; DeGomez TE; Clancy KM; Miller A Environ Entomol; 2008 Feb; 37(1):94-109. PubMed ID: 18348801 [TBL] [Abstract][Full Text] [Related]
9. Factors influencing flight capacity of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Evenden ML; Whitehouse CM; Sykes J Environ Entomol; 2014 Feb; 43(1):187-96. PubMed ID: 24367930 [TBL] [Abstract][Full Text] [Related]
10. Collecting and preserving bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae). Hulcr J; Gomez DF; Johnson AJ PLoS One; 2022; 17(4):e0265910. PubMed ID: 35427394 [TBL] [Abstract][Full Text] [Related]
11. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny. Aiello BR; Stanchak KE; Weber AI; Deora T; Sponberg S; Brunton BW Curr Opin Insect Sci; 2021 Dec; 48():8-17. PubMed ID: 34175464 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Phan HV; Park HC Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101 [TBL] [Abstract][Full Text] [Related]
13. Insect-machine hybrid system. Vo Doan Tat Thang ; Kolev S; Huynh Ngoc Anh ; Zhang Chao ; Massey TL; Abbeel P; Maharbiz MM; Sato H Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2816-9. PubMed ID: 24110313 [TBL] [Abstract][Full Text] [Related]
14. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects. Phan HV; Park HC J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558 [TBL] [Abstract][Full Text] [Related]
15. Extraordinary flight performance of the smallest beetles. Farisenkov SE; Lapina NA; Petrov PN; Polilov AA Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24643-24645. PubMed ID: 32958659 [TBL] [Abstract][Full Text] [Related]
16. The locomotor apparatus of one of the smallest beetles - The thoracic skeletomuscular system of Nephanes titan (Coleoptera, Ptiliidae). Yavorskaya MI; Beutel RG; Farisenkov SE; Polilov AA Arthropod Struct Dev; 2019 Jan; 48():71-82. PubMed ID: 30639185 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight. Le TQ; Truong TV; Park SH; Quang Truong T; Ko JH; Park HC; Byun D J R Soc Interface; 2013 Aug; 10(85):20130312. PubMed ID: 23740486 [TBL] [Abstract][Full Text] [Related]
18. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. Kosaka T; Gan JH; Long LD; Umezu S; Sato H Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33513597 [TBL] [Abstract][Full Text] [Related]
19. [Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)]. Fedorenko DN Zh Obshch Biol; 2013; 74(6):472-87. PubMed ID: 25438578 [TBL] [Abstract][Full Text] [Related]
20. The bark and ambrosia beetles of Bhutan (Coleoptera: Curculionidae: Scolytinae and Platypodinae): a synopsis with three new species of Scolytinae. Beaver RA; Smith SM Zootaxa; 2022 Aug; 5174(1):1-24. PubMed ID: 36095414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]