BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38523182)

  • 1. Evolution, types, and distribution of flight control devices on wings and elytra in bark beetles.
    Białkowski J; Rossa R; Ziemiakowicz A; Gohli J; Dymek J; Goczał J
    Sci Rep; 2024 Mar; 14(1):6999. PubMed ID: 38523182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae).
    Gaylord ML; Williams KK; Hofstetter RW; McMillin JD; Degomez TE; Wagner MR
    Environ Entomol; 2008 Feb; 37(1):57-69. PubMed ID: 18348797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.
    Johansson LC; Engel S; Baird E; Dacke M; Muijres FT; Hedenström A
    J R Soc Interface; 2012 Oct; 9(75):2745-8. PubMed ID: 22593097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturization re-establishes symmetry in the wing folding patterns of featherwing beetles.
    Petrov PN; Farisenkov SE; Polilov AA
    Sci Rep; 2020 Oct; 10(1):16458. PubMed ID: 33020523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. II. Wing reduction and the sensory field.
    Frantsevich L; Gorb S; Radchenko V; Gladun D; Polilov A; Cherney L; Browdy V; Kovalev M
    Arthropod Struct Dev; 2015 Jan; 44(1):1-9. PubMed ID: 25449977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel flight style and light wings boost flight performance of tiny beetles.
    Farisenkov SE; Kolomenskiy D; Petrov PN; Engels T; Lapina NA; Lehmann FO; Onishi R; Liu H; Polilov AA
    Nature; 2022 Feb; 602(7895):96-100. PubMed ID: 35046578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona.
    Williams KK; McMillin JD; DeGomez TE; Clancy KM; Miller A
    Environ Entomol; 2008 Feb; 37(1):94-109. PubMed ID: 18348801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing flight capacity of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae).
    Evenden ML; Whitehouse CM; Sykes J
    Environ Entomol; 2014 Feb; 43(1):187-96. PubMed ID: 24367930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collecting and preserving bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae).
    Hulcr J; Gomez DF; Johnson AJ
    PLoS One; 2022; 17(4):e0265910. PubMed ID: 35427394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny.
    Aiello BR; Stanchak KE; Weber AI; Deora T; Sponberg S; Brunton BW
    Curr Opin Insect Sci; 2021 Dec; 48():8-17. PubMed ID: 34175464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of collision recovery in flying beetles and flapping-wing robots.
    Phan HV; Park HC
    Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect-machine hybrid system.
    Vo Doan Tat Thang ; Kolev S; Huynh Ngoc Anh ; Zhang Chao ; Massey TL; Abbeel P; Maharbiz MM; Sato H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2816-9. PubMed ID: 24110313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary flight performance of the smallest beetles.
    Farisenkov SE; Lapina NA; Petrov PN; Polilov AA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24643-24645. PubMed ID: 32958659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The locomotor apparatus of one of the smallest beetles - The thoracic skeletomuscular system of Nephanes titan (Coleoptera, Ptiliidae).
    Yavorskaya MI; Beutel RG; Farisenkov SE; Polilov AA
    Arthropod Struct Dev; 2019 Jan; 48():71-82. PubMed ID: 30639185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
    Le TQ; Truong TV; Park SH; Quang Truong T; Ko JH; Park HC; Byun D
    J R Soc Interface; 2013 Aug; 10(85):20130312. PubMed ID: 23740486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold.
    Kosaka T; Gan JH; Long LD; Umezu S; Sato H
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33513597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)].
    Fedorenko DN
    Zh Obshch Biol; 2013; 74(6):472-87. PubMed ID: 25438578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bark and ambrosia beetles of Bhutan (Coleoptera: Curculionidae: Scolytinae and Platypodinae): a synopsis with three new species of Scolytinae.
    Beaver RA; Smith SM
    Zootaxa; 2022 Aug; 5174(1):1-24. PubMed ID: 36095414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot.
    Li Y; Wu J; Sato H
    Soft Robot; 2018 Aug; 5(4):365-374. PubMed ID: 29722607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.