These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38523182)
21. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot. Li Y; Wu J; Sato H Soft Robot; 2018 Aug; 5(4):365-374. PubMed ID: 29722607 [TBL] [Abstract][Full Text] [Related]
22. Vertical Distribution and Daily Flight Periodicity of Ambrosia Beetles (Coleoptera: Curculionidae) in Florida Avocado Orchards Affected by Laurel Wilt. Menocal O; Kendra PE; Montgomery WS; Crane JH; Carrillo D J Econ Entomol; 2018 May; 111(3):1190-1196. PubMed ID: 29528426 [TBL] [Abstract][Full Text] [Related]
23. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti. Li X; Zheng Y IET Nanobiotechnol; 2022 Sep; 16(7-8):273-283. PubMed ID: 35962575 [TBL] [Abstract][Full Text] [Related]
24. Quantifying dispersal of a non-aggressive saprophytic bark beetle. Meurisse N; Pawson S PLoS One; 2017; 12(4):e0174111. PubMed ID: 28406924 [TBL] [Abstract][Full Text] [Related]
25. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Farrell BD; Sequeira AS; O'Meara BC; Normark BB; Chung JH; Jordal BH Evolution; 2001 Oct; 55(10):2011-27. PubMed ID: 11761062 [TBL] [Abstract][Full Text] [Related]
26. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera). Ogawa N; Yoshizawa K J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378 [TBL] [Abstract][Full Text] [Related]
27. Responses of Native and Non-native Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) to Different Chemical Attractants: Insights From the USDA Forest Service Early Detection and Rapid Response Program Data Analysis. Hartshorn JA; Coyle DR; Rabaglia RJ J Econ Entomol; 2021 Apr; 114(2):776-783. PubMed ID: 33459780 [TBL] [Abstract][Full Text] [Related]
28. Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) Infesting Brazilian Peppertree Treated With Herbicide and the Volatile Tree Response. Wheeler GS; Kendra PE; David AS; Lake EC; Sigmon JW; Palacios J; Donlan EM Environ Entomol; 2021 Dec; 50(6):1311-1321. PubMed ID: 34519789 [TBL] [Abstract][Full Text] [Related]
29. Maximizing Bark and Ambrosia Beetle (Coleoptera: Curculionidae) Catches in Trapping Surveys for Longhorn and Jewel Beetles. Marchioro M; Rassati D; Faccoli M; Van Rooyen K; Kostanowicz C; Webster V; Mayo P; Sweeney J J Econ Entomol; 2020 Dec; 113(6):2745-2757. PubMed ID: 32964240 [TBL] [Abstract][Full Text] [Related]
30. Towards an evolutionary history of European-Alpine Trechus ground beetles: Species groups and wing reduction. Möst MH; Donabauer M; Arthofer W; Schlick-Steiner BC; Steiner FM Mol Phylogenet Evol; 2020 Aug; 149():106822. PubMed ID: 32294546 [TBL] [Abstract][Full Text] [Related]
31. Effect of larval growth conditions on adult body mass and long-distance flight endurance in a wood-boring beetle: Do smaller beetles fly better? Brown S; Soroker V; Ribak G J Insect Physiol; 2017 Apr; 98():327-335. PubMed ID: 28237580 [TBL] [Abstract][Full Text] [Related]
32. The bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa. Rabaglia RJ; Beaver RA; Johnson AJ; Schmaedick MA; Smith SM Zootaxa; 2020 Jul; 4808(1):zootaxa.4808.1.11. PubMed ID: 33055997 [TBL] [Abstract][Full Text] [Related]
33. The aerodynamics of flight in an insect flight-mill. Ribak G; Barkan S; Soroker V PLoS One; 2017; 12(11):e0186441. PubMed ID: 29091924 [TBL] [Abstract][Full Text] [Related]
34. Effects of pterostigma structure on vibrational characteristics during flight of Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Song ZL; Tong J; Yan YW; Sun JY Sci Rep; 2020 Jul; 10(1):11371. PubMed ID: 32647317 [TBL] [Abstract][Full Text] [Related]
35. Trap Height Affects Catches of Bark and Woodboring Beetles (Coleoptera: Curculionidae, Cerambycidae) in Baited Multiple-Funnel Traps in Southeastern United States. Miller DR; Crowe CM; Sweeney JD J Econ Entomol; 2020 Feb; 113(1):273-280. PubMed ID: 31617908 [TBL] [Abstract][Full Text] [Related]
36. Fossil evidence of elytra reduction in ship-timber beetles. Yamamoto S Sci Rep; 2019 Mar; 9(1):4938. PubMed ID: 30894613 [TBL] [Abstract][Full Text] [Related]
37. Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers ( Meresman Y; Ribak G J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33168594 [TBL] [Abstract][Full Text] [Related]
38. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). Bai M; McCullough E; Song KQ; Liu WG; Yang XK PLoS One; 2011; 6(6):e21600. PubMed ID: 21738727 [TBL] [Abstract][Full Text] [Related]
39. Comparative Meta-analysis Effects of Nonnative Ants (Hymenoptera: Formicidae), Ground Beetles (Coleoptera: Carabidae), and Bark and Ambrosia Beetles (Coleoptera: Curculionidae) on Native Confamilials. Hartshorn JA; Coyle DR Environ Entomol; 2021 Jun; 50(3):622-632. PubMed ID: 33822028 [TBL] [Abstract][Full Text] [Related]
40. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]