BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38523272)

  • 41. Advancing cancer driver gene detection via Schur complement graph augmentation and independent subspace feature extraction.
    Ma X; Li Z; Du Z; Xu Y; Chen Y; Zhuo L; Fu X; Liu R
    Comput Biol Med; 2024 May; 174():108484. PubMed ID: 38643595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-Channel Heterogeneous Graph Neural Network for Predicting microRNA-Mediated Drug Sensitivity.
    Deng L; Fan Z; Xiao X; Liu H; Zhang J
    J Chem Inf Model; 2022 Dec; 62(23):5929-5937. PubMed ID: 36413746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.
    Xuan P; Gu J; Cui H; Wang S; Toshiya N; Liu C; Zhang T
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38269610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.
    Pan X; Fan YX; Yan J; Shen HB
    BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction.
    Zhao X; Zhao X; Yin M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shared subspace-based radial basis function neural network for identifying ncRNAs subcellular localization.
    Ding Y; Tiwari P; Guo F; Zou Q
    Neural Netw; 2022 Dec; 156():170-178. PubMed ID: 36274524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations.
    Wang J; Liu X; Shen S; Deng L; Liu H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network.
    Lu Z; Zhong H; Tang L; Luo J; Zhou W; Liu L
    PLoS Comput Biol; 2023 Nov; 19(11):e1011634. PubMed ID: 38019786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity.
    Rohani N; Eslahchi C
    Sci Rep; 2019 Sep; 9(1):13645. PubMed ID: 31541145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction.
    Li G; Bai P; Liang C; Luo J
    BMC Genomics; 2024 Jan; 25(1):73. PubMed ID: 38233788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting circRNA-drug resistance associations based on a multimodal graph representation learning framework.
    Liu Z; Dai Q; Yu X; Duan X; Wang C
    IEEE J Biomed Health Inform; 2023 Jul; PP():. PubMed ID: 37498762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
    Li XS; Liu X; Lu L; Hua XS; Chi Y; Xia K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning.
    Wei J; Zhuo L; Zhou Z; Lian X; Fu X; Yao X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37427977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.