BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38523272)

  • 61. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RNAdetect: efficient computational detection of novel non-coding RNAs.
    Chen CC; Qian X; Yoon BJ
    Bioinformatics; 2019 Apr; 35(7):1133-1141. PubMed ID: 30169792
    [TBL] [Abstract][Full Text] [Related]  

  • 63. GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.
    Ma Q; Tan Y; Wang L
    BMC Bioinformatics; 2023 Feb; 24(1):35. PubMed ID: 36732704
    [TBL] [Abstract][Full Text] [Related]  

  • 64. MncR: Late Integration Machine Learning Model for Classification of ncRNA Classes Using Sequence and Structural Encoding.
    Dunkel H; Wehrmann H; Jensen LR; Kuss AW; Simm S
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240230
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ABLNCPP: Attention Mechanism-Based Bidirectional Long Short-Term Memory for Noncoding RNA Coding Potential Prediction.
    Deng L; Jiang Y; Hu X; Zheng R; Huang Z; Zhang J
    J Chem Inf Model; 2023 Jun; 63(12):3955-3966. PubMed ID: 37294848
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation.
    Jia X; Luo W; Li J; Xing J; Sun H; Wu S; Su X
    BMC Bioinformatics; 2024 Jun; 25(1):214. PubMed ID: 38877401
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ncRPheno: a comprehensive database platform for identification and validation of disease related noncoding RNAs.
    Zhang W; Yao G; Wang J; Yang M; Wang J; Zhang H; Li W
    RNA Biol; 2020 Jul; 17(7):943-955. PubMed ID: 32122231
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Revisiting drug-protein interaction prediction: a novel global-local perspective.
    Zhou Z; Liao Q; Wei J; Zhuo L; Wu X; Fu X; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38648052
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ncDLRES: a novel method for non-coding RNAs family prediction based on dynamic LSTM and ResNet.
    Wang L; Zhong X; Wang S; Liu Y
    BMC Bioinformatics; 2021 Sep; 22(1):447. PubMed ID: 34544356
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SLAPP: Subgraph-level attention-based performance prediction for deep learning models.
    Wang Z; Yang P; Hu L; Zhang B; Lin C; Lv W; Wang Q
    Neural Netw; 2024 Feb; 170():285-297. PubMed ID: 38000312
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network.
    Zhao C; Wang H; Qi W; Liu S
    Methods; 2022 Nov; 207():81-89. PubMed ID: 36167292
    [TBL] [Abstract][Full Text] [Related]  

  • 78. NPI-RGCNAE: Fast Predicting ncRNA-Protein Interactions Using the Relational Graph Convolutional Network Auto-Encoder.
    Yu H; Shen ZA; Du PF
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1861-1871. PubMed ID: 34699377
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MFPred: prediction of ncRNA families based on multi-feature fusion.
    Chen K; Zhu X; Wang J; Zhao Z; Hao L; Guo X; Liu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37615358
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.