These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38523272)

  • 81. Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering.
    Barracchia EP; Pio G; D'Elia D; Ceci M
    BMC Bioinformatics; 2020 Feb; 21(1):70. PubMed ID: 32093606
    [TBL] [Abstract][Full Text] [Related]  

  • 82. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features.
    Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J
    Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks.
    Yao D; Deng Y; Zhan X; Zhan X
    BMC Bioinformatics; 2024 Jan; 25(1):46. PubMed ID: 38287236
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment.
    Wang H; Tang J; Ding Y; Guo F
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33443536
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A deep learning method for predicting metabolite-disease associations via graph neural network.
    Sun F; Sun J; Zhao Q
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35817399
    [TBL] [Abstract][Full Text] [Related]  

  • 88. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network.
    Lan W; Dong Y; Chen Q; Zheng R; Liu J; Pan Y; Chen YP
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864877
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.
    Zhang L; Chen M; Hu X; Deng L
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Drug repositioning with adaptive graph convolutional networks.
    Sun X; Jia X; Lu Z; Tang J; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38070161
    [TBL] [Abstract][Full Text] [Related]  

  • 91. ncRDeep: Non-coding RNA classification with convolutional neural network.
    Chantsalnyam T; Lim DY; Tayara H; Chong KT
    Comput Biol Chem; 2020 Oct; 88():107364. PubMed ID: 32890916
    [TBL] [Abstract][Full Text] [Related]  

  • 92. ncRFP: A Novel end-to-end Method for Non-Coding RNAs Family Prediction Based on Deep Learning.
    Wang L; Zheng S; Zhang H; Qiu Z; Zhong X; Liuliu H; Liu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):784-789. PubMed ID: 32224462
    [TBL] [Abstract][Full Text] [Related]  

  • 93. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 94. ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning.
    Chantsalnyam T; Siraj A; Tayara H; Chong KT
    Genomics; 2021 Sep; 113(5):3030-3038. PubMed ID: 34242708
    [TBL] [Abstract][Full Text] [Related]  

  • 95. NeRNA: A negative data generation framework for machine learning applications of noncoding RNAs.
    Orhan ME; Demirci YM; Saçar Demirci MD
    Comput Biol Med; 2023 Jun; 159():106861. PubMed ID: 37075604
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches.
    Zhao T; Hu Y; Cheng L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33048110
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 98. MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network.
    Pi J; Jiao P; Zhang Y; Li J
    Front Microbiol; 2022; 13():819046. PubMed ID: 35464940
    [TBL] [Abstract][Full Text] [Related]  

  • 99. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder.
    Luo Y; Deng L
    J Chem Inf Model; 2024 May; 64(10):4359-4372. PubMed ID: 38745420
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Identifying Associations between Small Nucleolar RNAs and Diseases via Graph Convolutional Network and Attention Mechanism.
    Liu S; Zhu W; Wang P; Yu S; Wu F
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38980776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.