These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38523408)

  • 21. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions.
    John J; Lee DK; Sim U
    Nano Converg; 2019 Apr; 6(1):15. PubMed ID: 31025218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosting Electrocatalytic Ammonia Synthesis of Bio-Inspired Porous Mo-Doped Hematite via Nitrogen Activation.
    Niu ZY; Jiao L; Zhang T; Zhao XM; Wang XF; Tan Z; Liu LZ; Chen S; Song XZ
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55559-55567. PubMed ID: 36479880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-Doped Fe
    Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P
    Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia.
    Majumder M; Saini H; Dědek I; Schneemann A; Chodankar NR; Ramarao V; Santosh MS; Nanjundan AK; Kment Š; Dubal D; Otyepka M; Zbořil R; Jayaramulu K
    ACS Nano; 2021 Nov; 15(11):17275-17298. PubMed ID: 34751563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S; Lu X; Wang L; Gale J; Amal R
    Adv Mater; 2019 Mar; 31(13):e1805367. PubMed ID: 30648293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Li-N
    Ma X; Li J; Zhou H; Zhao J; Sun H
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19032-19042. PubMed ID: 37026992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New opportunities for efficient N
    Li H; Mao C; Shang H; Yang Z; Ai Z; Zhang L
    Nanoscale; 2018 Aug; 10(33):15429-15435. PubMed ID: 30094446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Schottky Junctions with Bi@Bi
    Wang M; Wei G; Li R; Yu M; Liu G; Peng Y
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cr
    Yu G; Guo H; Liu S; Chen L; Alshehri AA; Alzahrani KA; Hao F; Li T
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35764-35769. PubMed ID: 31508929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation.
    Zhang Y; Ran L; Zhang Y; Zhai P; Wu Y; Gao J; Li Z; Zhang B; Wang C; Fan Z; Zhang X; Cao J; Jin D; Sun L; Hou J
    ACS Nano; 2021 Nov; 15(11):17820-17830. PubMed ID: 34708651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron Monomers or Trimers on Nitrogen-Doped Carbon: Which Is Better for the Electrocatalytic Nitrogen Reduction Reaction?
    Yang R; Gao D; Li W; Lu F; Yi D; Yang Y; Wang X
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28452-28460. PubMed ID: 38775640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
    Li J; Li H; Zhan G; Zhang L
    Acc Chem Res; 2017 Jan; 50(1):112-121. PubMed ID: 28009157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterojunction-based photocatalytic nitrogen fixation: principles and current progress.
    Ali H; Masar M; Guler AC; Urbanek M; Machovsky M; Kuritka I
    Nanoscale Adv; 2021 Nov; 3(22):6358-6372. PubMed ID: 36133492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts.
    Ellingsson V; Iqbal A; Skúlason E; Abghoui Y
    ChemSusChem; 2023 Nov; 16(22):e202300947. PubMed ID: 37702376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ambient Electrochemical Ammonia Synthesis: From Theoretical Guidance to Catalyst Design.
    Mu J; Gao XW; Yu T; Zhao LK; Luo WB; Yang H; Liu ZM; Sun Z; Gu QF; Li F
    Adv Sci (Weinh); 2024 Apr; 11(15):e2308979. PubMed ID: 38345238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinspired Electrocatalyst for Electrochemical Reduction of N
    Xian H; Guo H; Chen Z; Yu G; Alshehri AA; Alzahrani KA; Hao F; Song R; Li T
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2445-2451. PubMed ID: 31852178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction.
    Pang Y; Su C; Jia G; Xu L; Shao Z
    Chem Soc Rev; 2021 Nov; 50(22):12744-12787. PubMed ID: 34647937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual Z-scheme TCN/ZnS/ ZnIn
    Sun T; Gao P; He Y; Wu Z; Liu J; Rong X
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):602-611. PubMed ID: 37864867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Two-Dimensional Metal-Based π-d Conjugated Nanosheets as Photocatalyst for Nitrogen Reduction Reaction: The First-Principle Investigation.
    Xia L; Wang Z; Zhao Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5384-5394. PubMed ID: 35044767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.